用户名: 密码: 验证码:
利用小麦SSR研究其近缘物种的遗传多样性及其微卫星序列的进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微卫星序列作为研究物种进化的重要工具已经越来越被人们重视,许多串联重复序列在基因组中具有重要的功能,目前普遍认为具有3个作用:一是组成开放阅读框的一部分:二是参与基因组的调节活动,(GA)n/(CT)n位于基因的启动子区域,是基因表达调节机制中的一个重要组成部分:三是组成染色体的脆性位点。基因组是一个复杂的信息储存系统在基因组系统结构中,重复序列作为主要的决定因素影响着DNA复制、染色体分离、基因表达等重要生命活动。对串联重复序列生物功能的研究还处于起步阶段,鉴于微卫星序列在基因组中的重要作用,有必要对微卫星序列的进化以及生物学功能进行深入地研究。大量的研究结果表明微卫星DNA(SSR)在物种多态性检测方面具有其独特优势,已广泛应用于生物遗传多样性研究、亲缘关系分析、品种鉴定、指纹图谱构建、主要性状基因的定位、遗传图谱及系谱分析和分子标记辅助选择育种等多个方面。
     尽管SSR的应用前景非常广阔,但从基因组文库中开发某一物种SSR标记是非常昂贵和费时的,因为它要求从已知的序列中开发合适的多态性信息位点,这一点不同于其它分子标记。上个世纪90年代人们就提出某一物种的开发出来的微卫星引物能否在其他相近物种中转移使用,研究发现微卫星DNA的侧翼序列比较保守,某一物种的微卫星引物可在相近物种中使用,这可以减少获取微卫星的工作量。在小麦族中前人成功的将小麦微卫星引物应用于黑麦、簇毛麦、山羊草等物种的研究中。这种简单有效的方法增加了相关物种的微卫星引物数量,通过这种方法还可以获得更多的种属特异分子标记。这样便可以为近缘物种的研究节约大量的成本。有利于探明近缘物种间的遗传同源性以及物种起源等生命科学领域中的重要问题。
     本研究利用小麦微卫星引物对小麦近缘属中遗传多样性,特异分子标记,以及近缘属中的微卫星序列的变异与进化进行了研究,得到如下主要研究结果:
     1.利用小麦微卫星DNA分析小麦近缘物种植物的遗传多样性
     利用218对小麦SSR引物对小麦及其近缘种共22个材料进行PCR扩增。从中筛选到39对多态性高、重复性好的引物,这些引物可在供试材料中检测出213个等位基因变异,平均每个位点可检测到5.4个等位基因。位点多态性信息量(PIC)变幅为0.38~0.89,平均为0.57。NTSYS软件的分析结果表明22份材料的遗传相似系数范围为0.46~0.94,平均遗传相似系数为0.67,聚类分析结果显示小麦、偃麦草、大赖草、黑麦均各自聚类,与传统的物种分类结果有较高的吻合度。这表明(1)SSR可以应用于小麦与其近缘种的遗传多样性研究。(2)SSR揭示的小麦与其近缘物种间的多态性高,可以用来鉴定小麦近缘种。
     2.发掘新的小麦与小麦近缘物种的特异分子标记
     本实验选位于普通小麦1A-7A、1B-7B、1D-7D染色体上的126对微卫星引物对普通小麦中国春、MY11、簇毛麦、粗山羊草、大赖草、偃麦草、黑麦七个材料进行了PCR扩增,结果发现有12个引物可以在黑麦中扩增出特异带来,8个引物可以在簇毛麦中扩增出特异带来,山羊草有4个,大赖草有9个,偃麦草有10个,其中大多数片段大小在500bp左右。本实验着重对黑麦的两个特异性标记进行了分离和鉴定,(1)发现引物对Xgwm260在黑麦中扩增出了一条长大约1000bp的黑麦特异片段,而供试品种小麦及其近缘属物种均未扩增出该片段,进而用该引物对小麦黑麦杂交F1代以及小麦—黑麦双二倍体进行扩增,结果显示所有含黑麦染色质的材料都能扩增出目标片段。为了确定该特异性标记在黑麦染色体组上的分布,我们利用引物Xgwm260对一套中国春-帝国黑麦二体附加系(1R-7R)进行扩增,在1R-7R附加系中,仅有4R染色体能出该片段,这表明该标记为黑麦4R染色体特有,可以应用于小麦背景中黑麦4R染色质的鉴定。对目标片段进行回收、克隆后进行序列测定,得到该片段的全长序列为988bp,命名为PMD260-1000。序列分析结果表明序列中941位CACTA转座子与转录因子SP1结合,378—383有GC框,并且GC框上有SP1,序列倒位重复,并含有开放阅读框,推断该序列结构可能为反转录转座子。(2)引物Xgwm232在黑麦中扩增出一条491bp的特异带,用上述同样的方法证明其特异性,并且将其定位在6R染色上,测序结果发现序列含有两个TATAA框。同时,将上述两个序列在NCBI比对都没有同源性高的序列,说明这两个序列为新的特异片段。
     3.通过分析序列研究小麦微卫星序列的变异与进化
     本实验在小麦近缘物种中克隆测定了一些特异重复序列,将测序结果输入NCBI的GENEBANK里进行同源性比对,并用DNAMAN软件分析序列结构,用来研究这些片段在漫长的进化过程中发生的变异。发现这些重复序列中含有多个与转录调控有关的保守序列以及与转录因子结合位点相似的核苷酸序列。尽管已有新蠡蚝诼筇匾斓闹馗葱蛄斜环掷氤隼?但仍有大量重复序列等待发掘。本文进一步发掘新的特异重复序列,阐明特异重复序列在小麦族植物中的分布与进化规律。(1)序列PMD-268与四倍体栽培小麦Triticum turgidum L.Langdon一致性达到97%.在进化过程中该序列的TATA框发生了突变,与这部分基因组序列的差异主要存在于重复序列的侧翼序列,这就使引物结合区发生了变异,导致在所有供试四倍体小麦中未能扩出。另外发现该序列与双倍体小麦(Triticummonococcum)actin gene(AF326781.1)与六倍体栽培小麦Triticum aestivumcultivar Renan clone BAC 930H14中部分核苷酸序列的一致性达到100%,35-66位核苷酸序列含有TATA框并且与一致序列TATAWAW(氨基酸序列)相对应,该序列可能与转录的起始有关。(2)PMD120-500序列为倒位重复,序列上下有各含有一个TATAA框,1是启动子的特征性序列。3′侧翼区序列含有一个特征性的加尾信号序列AATAAA,符合终止子的序列特征。该序列与小麦醇溶蛋白基因G2656gamma-gliadin gene中的核苷酸序列位5941—6306有高达91%的同源性,其中有两个AATAAA框发生了突变,进化过程中终止子突变可是由于碱基的突变、插人或缺失,有可能对调控元件之间的空间结构产生影响。与大麦属Hordeumvulgare subsp.vulgare eIF4E gene locus转录起始因子核苷酸序列的112712-113159位有高达91%的同源性,并且AATAAA框也发生了突变,黑麦的AATAAA框中插入了一个碱基G导致大麦的缺失该调控元件。
Microsatellite DNA is considered as one of the excellent apprpoaches in studing species evolution and genetic diversity.Tandem repeat sequences play ansignificant role in plant genome,at present,the three functions is widely admitted:first,they are composition of open reading frame,second,they participate in genome adjustment activity.Third,they compose the brittleness locus in chromosome.Genome is that a complicated information deposited system in genome system structure.Repeat sequences influence important life activities such as DNA duplication,chromosome separation,gene expression.Though several functions has been regarded, it is still a long way in the function study on tandem repeat sequences.so it is necessary to perform further study on SSR evolution and biology function.Large amount of studies suggest microsatellite has advantage in the field of detecting polymorphic in species,and it has been already widely used in genetic diversity,phylogenetic relationships,variety identification,building fingerprint map,linkage genetic map,the locations of quantitative trait loci,pedigree analysis and molecular marker-assisted Breeding.
     Though the application foreground of microsatellites was very wider, exploit SSR marker from species is a very dearly and time-consuming job,because it need people to exploit appropriately polymorphic locus from known sequences,this point is differ from other molecular markers. From 1990s,people had taken an idea whether SSR marker could be applied to wheat species.The research found that the flanking sequence of microsatellite DNA is comparatively stably.The microsatellite marker from a certain species could be applied to nearly species,it can reducing workload of getting microsatellite.Many wheat microsatellite primer sets were successfully used for amplication of DNA from several related species, such as rye、Dasypyrum、Aegilops.It is a very easy and effective measure that enhance the quantity of relative species and get more special molecular markers.Thus,microsatellite DNA seemed to be very useful for clarifying the evolutionary relationships of closely related populations.
     Consequently,the aim of this study was to examine the transferability and phylogenetic relationships of SSR markers,getting more specific ssr markers,along with studying the variation and evolution of the microsatellite from closely related populations,this research shows the results as follows:
     1.Genetic diversity and phylogenetic relationships among triticeae species as revealed by wheat microsatellite markers
     Using 218 genomic wheat(Triticum aestivum) microsatellite markers to evaluate the genetic diversity and phylogenetic relationships of 22 triticeae species by PCR ampification.39 wheat SSR primers could generate polymorphism bands and the repetitiveness is fine were selected.These primers generated 213 polymorphic alleles in 22 accessions,with an average of 5.4 alleles per primer.The polymorphism information content (PIC) values of the loci ranged from 0.38~0.89,with an average PIC of 0.57.The value of genetic similarity(GS) was varied from 0.46 to 0.94, with an average GS of 0.67.The cluster result showed that all species were classified into 4 species,wheat、Lophopyrum elongatum、Haynaldia villosa、Secale cereale were each belong to one group.The result of cluster is consistent with the results of the traditional taxonomy,which indicate that microsatellites are a useful way to analyze genetic relationship between wheat and its related species.Ampliated polymorphic bands in every species evaluating wheat microsatellite markers can be identify triticeae species.
     2.Development of Dasypyrum Genome Specific Marker by Using Wheat Microsatellites
     One hundred and twenty-six SSR primer pairs,distributed in chromosome 1A to 7A,1B to 7B,1D to 7D of Triticum aestivum,were investigated on common wheat,Dasypyrum,Haynaldia villosa,Lophopyrum elongatum,rye.12 SSR markers can amplify rye-specific bands in rye,8 markers can amplify specific bands in Dasypyrum,4 markers can ampify specific bands in Aegilops,9 markers can amplify specific bands in Haynaldia villosa,10 markers can amplify specific bands in Lophopyrum elongatum,and most of these bands are about 500bp,600bp,and 800bp in size.In this experiment,2 genome specific repetitive DNA sequences were separated and identified,(1) A specific polymorphic DNA fragment of about 1000bp amplified by primer pair Xgwm260 was obtained in all lines containing rye chromosomes,but there were not the case in the tested materials.Furthermore,PCR analysis was performed on a set of Chinese Spring×Imperial addition,the result showed that the fourth pair of rye chromosomes contain Xgwm260.The PCR product was recovered,cloned and sequenced,the length of the fragment is 988bp,named PMD260-1000,at the 941 location CACTA combining with SP1(transcription factors),GC-BOX existing sp1,the sequence is inversion repeated,open reading frame was found in the sequence,deduce that fragment structure may be that retrotransposon.Therefore,Xgwm260 is a genome-specific polymorphic DNA segment for genera of rye,and it could be used as a molecular marker for detection of chromosomes of rye in wheat.(2) Xgwm232 also could amplified rye-specific bands and the band is 491bp in size.Take the same measure as above to indicate the fragment is a genome-specific polymorphic DNA segment for genera of rye,and locate on the sixth pair of rye chromosomes.The NCBI Blast revealed that two fragments all had no high homology.Therefore,they could be 2 new DNA sequences.
     3.Study Variation and Evolution of wheat microsatellite by Sequencing Analysis
     This experiment cloned some special repeated segments,after sequencing,Put the sequencing result into GENEBANK in NCBI,comparing similarity,and analysis the sequence structure by the software DNAMAN, to study the mutation of these fragments during its long process of evolution.The research found this repeated sequence has stably segment,there were also several conserved motifs such as CAAT-box and GAGA-box,which are related to regulation of transcription,and the sequence similar with nucleotide sequence transcription factor binding sites.
     (1) The similarity degree of sequence compare between PMD120-500 and the sequence in gamma-gliadin gene reached 97%.The TATA-BOX in this sequence had the mutation in the process of evolution.The difference from this genome sequence existing in the flank of repeated sequence,so it cause mutation in the binding aera,and failed to amplicate tetraploid wheat.The similarity degree of sequence compare between PMD120-500 and a section of Triticum monococcum actin geneand Triticum aestivum cultivar Renan clone BAC 930H14 reached 100%,the location between 100 and 110 has a TATA box,also relative to Amino acid sequence,this sequence may relative with the initial of transcription.(2)The PMD120-500 is inverted repeat sequence,TATAA frame were exited in up-downstream site respectively,and a TATA frame,all belong to promoter characteristic sequence.And the similarity degree of sequence compare between PMD120-500 and the sequence in gamma-gliadin gene G2656 reached 91%,two AATAAA frames have changed,the terminator mutation in the process of evolution could be caused by mutation,Insertion and deletion on base.It could affect the space structure between regulatory elements,the similarity degree of sequence compare between PMD120-500 and the sequence in Hordeum vulgare subsp,vulgare eIF4E gene locus reached 91%,and have mutation in AATAAA frame,insert a G in the AATAAA frame,conduced the Hordeum vulgare lack this regulatory element.
引文
[1]Zhivotovsky L A,Rosenberg N A,Feldman M W.Features of evolution and expansion of modern humans,binferred from genomewide microsatellite markers[J].Am J Hum Genet,2003,(72):1171.
    [2]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [3]Pejic I,Ajmone-Marsan P,Morgante M,et al.Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs,RAPDs,SSRs and AFLPs[J].Theor Appl Genet,1998,(97):1248-1255.
    [4]袁力行,傅骏骅,warburton等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [5]Plaschke J,Ganal M W,Roder M,SSR detection of gentic diversity in closely related bread wheat using microsatellite markers[J].Theor Appl Genet,1995,(91):1001-1007.
    [6]Bohn M,Utz H F,Melchinger A E.Gentic similarities among winter wheat wheat cultivars determined on the basis of RFLPs,AFLPs and SSRs and their use of predicting progeny variance[J].Crop Science,1999,(39):228-237.
    [7]刘勇,刘德春,吴波等.利用SSR标记对中国柚类资源及近缘种遗传多样性研究.农业生物技术学报,2006,14(1):90-95.
    [8]Prasad M,Roy J Roy J K,et al.The use of microsatellites for detecting DNA polymorphism,genotype identification and genetic diversity in wheat[J].Theoretical and Applied Genetics 2000,(100):584-592.
    [9]吴晓雷,贺超英,陈受宜.用SSR分子标记研究大豆属种间亲缘进化关系.遗传学报,2001,28(4):359-366.
    [10]Rongwei J.The use of microsatellite DNA markers for soybean genotype identification.Theor Appl Grnry,1995,(90):43-48.
    [11]谭君,丁仲芳,孙仕贤等.西南常用玉米自交系SSR指纹图谱构建.西南农业学报,2003,16(2):1-6.
    [12]邵元健,潘存红,陈宗祥等.水稻不完全隐性卷叶主基因rl_((t))的精细定位.科 学通报,2005,50(19):2107-2113.
    [13]Stephenson P,Bryan G,Kirby J,et.Fifty new microsatellite loci for the wheat genetic map[J].Theor.Appl.Genet.,1998,97(56):946-949.
    [14]郭光艳,李瑞芬,张敬原等.利用SSR鉴定普通小麦-多枝赖草二体异附加系Line24中外源染色体同源群的归属[J].华北农学报,2004,19(4):14-17.
    [15]刘成,任正隆等.利用小麦微卫星引物建立簇毛麦染色体组特异性标记[J].遗传,2006,28(12):1573-1579.
    [16]刘成,杨足君,冯娟等.多年生簇毛麦系统学地位的RAPD分析[J].麦类作物学报,2006,26(2):11-15.
    [17]杨瑞武,周永红,郑有良,魏育明.利用RAPD分析披碱草属、鹅观草属和猬草属模式种的亲缘关系[J].西北植物学报,2001,21(5):865-871.
    [18]Flavell RB.Nucleotide sequence organization in the wheat genome[J].Heredity,1976,(37):231-252
    [19]白建荣,贾旭,王道文.小麦及其近缘种中基因组特异性DNA重复序列的研究进展[J].遗传,2002,24(5):595-600.
    [20]Appels R,Moran LB.Molecular analysis of alien chromatin introduced into wheat[J].In Gene manipulation in plant improvement.Stadler Genet Symp,1984,(16):529-557.
    [21]康芬芬,李志红,杨定等.利用微卫星标记初步分析橘小实蝇4个地理种群的遗传多态性[J],昆虫知识,2006,(3).
    [22]Litt M,Luty J A.A hypervariable microsatellite revealed by in vitro amplification of dinucleatide repeat within the cardiac muscle actin gene[J].Am Jour of Hum Genet,1989,(44):397-401.
    [23]邹喻苹,葛颂,王晓东等.系统与进化植物学中的分子标记[M].北京:北京科学出版社,2001:2-5.
    [24]Roder MS,Plaschke J,Konig SU,Borner A,Sorrells ME,Tanksley SD,Ganal MW.Abundance,variability and chromosomal location of microsatellite wheat[J].Mol Genet Genomics,1995,(24):327-333.
    [25]Korzun V,Malyshev S,Voylokov AV et.A genetic map of rye combining RFLP,isozyme,protein,microsatellite and gene loci[J].Theor Appl Genet,2001,(102):709-717.
    [26]Kuleung C,Baenziger PS,Dweikat I.Transferability of SSR markersamong wheat,rye,and triticale[J].Theor Appl Genet,2004,(108):1147-1150.
    [27]Zhang Wei,Gao An-li,Zhou Bo,Chen Pei-du.Screening and applying wheat microsatellite markers to trace individual Haynaldia villosa chromosome[J].Acta Genetica Sinica,2006,33(3):236-243.
    [28]刘成,杨足君,任正隆等.利用小麦微卫星引物建立簇毛麦染色体组特异性标记[J].遗传,2006,28(12):1573-1579.
    [29]Adonina IG,Salina EA,Pestsova EG,Roder MS.Transferbility of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome[J].Genome,2005,(48):959-970.
    [30]邵映田.小麦抗锈病基因Yr10的AFLP标记[J].科学通报,2001,(08):669-672.
    [31]齐莉莉,刘大钧,刘大钧.小麦白粉病新抗源-基因pm21[J].作物学报,1995,21(48):257-262.
    [32]Sozinov,A,and Poperelya,F A.Genetic classification of prolamins and its use for plant breeding[J].Ann Technol Agric,1980,(29):229 - 245.
    [33]Metakovsky E V,Bekes F Bekes F.Gluten polypetides as useful genetic markers of dough quality in Australian wheats[J].Australian Journal of Agricultural Research,1990,(41):289-306.
    [34]郭北海.小麦籽粒储藏蛋白研究进展[J].河北农大学报,1990,(2):99-104.
    [35]郎明林,张荣芝,张荣芝.中国北方冬麦区主栽品种醇溶蛋白指纹图谱数据库的建立[J].中国农业科学,2002,35(03):238-244.
    [36]张学勇.西藏半野生小麦高分子量麦谷蛋白亚基组成分析[J].中国农业科学,2002,(3):1302-1310.
    [37]Prasad M,Roy J K,Roy J K.The use of microsatellites for detecting DNA polymorphism,genotype identification and genetic diversity in wheat[J].Theoretical and Applied Genetics,2000,(100):584-592.
    [38]景蕊莲,昌小平.SSR标记在小麦种质资源研究中的应用[J].作物品种资源,1999,(2):17-20.
    [39]张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展[J].中国农业科学,2000,33(5):1-7.
    [40]Azaiez A,Bouchard E F,Jean M,et al.Length,orientation,and plant host influence the mutation frequency in microsatellites[J].Genome,2006,(49):1366.
    [41]Levinson G,Gutman A.A major mechanism for DNA sequence evolution[J].Mol Biol Evol,1987,(4):203.
    [42]Lopez-Giraldez F,Marmi J,Domingo-Roura X.High incidence of nonslippage mechanisms generating variability and complexity in eurasian badger microsatellites[J].J Hered,2007,(98):620.
    [43]Bachtrog D,Agis M,Imhof M,e al.Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster[J].Mol Biol Evol,2000,(17):1277.
    [44]Thuillet A C,Bataillon T,Poirier S,et al.Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data[J].Genetics,2005,(169):1589.
    [45]Karaoglu H,Lee C M Y,Meyer W.Survey of simple sequence repeats in completed fungal genomes[J].Mol Biol Evol,2005,(22):639.
    [46]Innan H,Terauchi R,Miyashita N T.Microsatellite polymorphism in natural population of the wild plant Arabidopsis thaliana[J].Genetics,1997,(146):1441.
    [47]Kruglyak S,Durrett R,Schug MD,Aquadro CF.Distribution and Abundance of microsatellites in the yeast genome can be explained by abalance between slippage events and point mutations[J].Mol Bi of Evol, 2000,(17):1210-1219.
    [48]Bachtrog D,Weiss S,Zangerl B,Sch10tterer C.Distribution of Dinucleotide micorsatellites in the Drosophila melanogaster genome[J].Mol Biol Evol,1999,(16):602-610.
    [49]Harr B,Schlotterer C.Long microsatellite alleles in Drosophila Melanogaster have a downward mutation bias and short persistence times,which cause their genome-wide under representation[J].Genetics,2000,15(15):1213-1220.
    [50]Harr B,Todorova J,Schlotterer C.Mismatch repair driven mutational bias in D.melanogaster[J].Mol Cell,2002,(10):199-205.
    [51]Schorderet DF,Gartler SM.Analysis of CpG suppression in Methylated and nonmethylated species[J].Proc Natl Arad Sci USA,1992,(89):957-961.
    [52]Stallings RL.CpG suppression in vertebrate genomes does not account for the rarity of(CpG)n microsatellite repeats[J].Genomics,1992,(13):890-891.
    [53]Lai Y,Sun F.The relationship between microsatellite slippage Mutation rate and the number of repeat units[J].Mol Biol Evol,2003,20(12):2 123-213.
    [54]Shaked H,Kashkush K,Ozakan H,Feldman M,Levy A A.Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat[J].Plant Cell,2001,(13):1749-1759.
    [55]任正隆,T.Lelley,G Roebbelen.八倍体小黑麦X普通小麦杂种后代群体中的染色体易位[J].遗传学报,1991,18(13):228-23.
    [56]Brosius J.Retroposons seeds of evolution[J].Science,1993,(251):753.
    [57]Nei M,Li WH.Mathematical model for studying genetic variation in terms of restriction endonucleases[J].Proceedings of the National Academy of Sciences,1979,(13):5269-5273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700