用户名: 密码: 验证码:
宜昌陡山沱组第三岩性段条带状碳酸盐岩环境磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宜昌Ediacaran系陡山沱组第三岩性段上部沉积了一套白云岩-灰岩互层条带状碳酸盐岩。前人研究表明白云岩剩磁参数小于相邻层位灰岩,但未对磁学结果进行很好的解译,也未涉及其所反映的地质过程及环境意义。本文在此基础上开展了详细的磁学、阴极发光及扫描电镜研究,分析讨论剩磁参数所反应的环境意义、碳酸盐岩互层成因及二者间的联系。
     磁学实验表明粉晶白云岩与相邻层位泥晶灰岩具有相同的携磁矿物——磁铁矿、亚铁磁性铁硫化物,因而灰岩层位较大的剩磁参数值表明其磁性矿物含量多于粉晶白云岩,磁畴粒度也更细。然而XRD结果表明白云岩层位沉积时期陆源输入含铁碎屑矿物含量高于灰岩。因此在白云岩层位发生了强烈的还原成岩作用,选择性溶解大量细粒亚铁磁性矿物,使得磁性矿物含量减少,磁性颗粒粒度变粗。剩磁参数可以很好的反应还原成岩作用强度,即沉积时期的氧化还原状态。粉晶白云岩层位形成于偏还原环境,而泥晶灰岩则相对氧化。
     阴极发光及扫描电镜分析表明白云岩为泥晶灰岩白云石化产物,且白云石为具有同心环带结构的铁白云石,这意味着在白云石层状生长过程中有溶解的Fe~(2+)进入白云石晶格。白云岩-灰岩呈薄互层状产出指示白云岩形成于早成岩阶段,且该区未有含铁流体侵入的文献记载,因此白云石晶格中的Fe~(2+)来源于陆源含铁碎屑矿物的还原性溶解。白云岩层遭受强烈的还原成岩作用,粉晶白云岩中黄铁矿与白云石颗粒伴生,而重晶石分布于泥晶方解石基质中以及碳同位素的负异常均指示了白云岩的硫酸盐还原有机成因。粉晶白云岩层有机质输入量大从而发生强烈的还原成岩作用,克服了白云岩化能垒,形成透入性发育结晶粒度大的含铁白云岩,且大量溶解陆源含铁碎屑造成磁性减弱,而泥晶灰岩层位有机质输入量少还原成岩弱,高的硫酸根浓度抑制了白云岩化,且保存了原始剩磁信号,因此白云岩及灰岩的岩性特征也同样反应了其形成环境的差异,白云岩层发育于偏还原的环境。
     该剖面碳酸盐岩剩磁参数值与岩性特征均反映了还原成岩作用的强弱,二者共同指示了碳酸盐岩形成时期环境的变化,可作为氧化还原环境的替代性指标。
A series ribbon carbonates distributed in the upper part of the third lithostratigraphic member of Doushantuo Formation, Yichang. Previous study showed that the remanence parameter of silty dolostone was less than the adjacent micritic limestone. But the work didn’t give good results on the magnetic interpretation, nor the geological processes and environmental implications involved. In this paper, detailed measurements of rock magnetism, CL and SEM have been carried out to discuss the environmental implications of remanence parameter and the formation of ribbon carbonates.
     Rock magnetic experiments reveal the predominant magnetic minerals in the dolostone and limestone are magnetite and geigite/pyrrhotite, and therefore the larger remanences of limestone indicate the larger content of magnetic minerals and finer grain size than adjacent dolostone. However, XRD results prove that the inputs of terrigenous detrital iron bearing minerals are abundant in the dolostone layer during the sedimentary or early diagenetic period. The combination of rock magnetism and XRD analysis suggest a strong effect of reductive diagenesis on dolostone and the selective dissolution of large number of fine grained ferromagnetic minerals results in the coarser grain size. Remanence parameters play very good response to the degree of reductive diagenesis, that is, the redox state during the deposition. The silty dolostone form in a partial reduction-bit environment and micritic limestone is relatively oxidation.
     Cathodoluminescence and scanning electron microscopy analysis show that the dolomite is the production of limestone replacement and dolomite has concentric zonation, which means that dissolved Fe~(2+) comes into dolomite lattice during dolomitization. Ribbon carbonates indicate that they form in early diagenetic period and the orgin of Fe~(2+) is dissolution of terrigenous detrital iron bearing minerals. Dolostones which subject to strong reductive diagenesis, the characteristic of pyrite and barite and carbon isotope anomalies are indicative of sulfate-reducing organic origin of dolomite. Larger inputs of organic matter result in strong reduction diagenesis, the energy barrier of dolomitization then was overcame and magnetic signal was weakened. Otherwise, less inputs of organic matter in limestone read to weak reduction diagenesis and high concentrations of sulfate inhibited dolomitization. The original remanence signal was preserved. The lithology of dolostone and limestone also reflect differences in the environment of its formation. The silty dolostone form in a partial reduction-bit environment and micritic limestone is relatively oxidation.
     The remanence parameters and lithologic features reflect the degree of reduction diagenesis. Both of them can be used as redox alternative indicators of the environment.
引文
Baker P A, Kastner M. Constraints on the formation of sedimentary dolomite. Science, 1981, 213: 214~216
    Barfod G H. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 2002, 201: 203~212
    Berner R A. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 1981, 51: 359~365
    Berner R A. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 1984, 48: 605~615
    Canfield D E, Berner E A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta, 1987, 51: 645~659
    Canfield D E, Poulton S W, Knoll A H. Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry. Science, 2008, 321: 949~952
    Chai L, Navrotsky A, Reeder R J. Energetics of calcium-rich dolomite. Geochimica et Cosmochimica Acta, 1995, 59: 939~944
    Chang L, Roberts A P, Muxworthy A R, et al. Magnetic characteristics of synthetic pseudo-single-domain and multidomain greigite (Fe3S4). Geophysical Research Letters, 2007, 34, L24304, doi: 10.1029/2007GL032114
    Condon D, Zhu M, Bowring S, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95~98
    Dekkers M J. Magnetic properties of natural pyrrhotiteⅡ. High- and low-temperature behaviour of Jrs and TRM as a function of grain size. Physics of the Earth and Planetary Interiors, 1989a, 57: 266~283
    Demory F, Oberhansli H, Nowaczyk N R, et al. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Global and Planetary Change, 2005, 46: 145~166
    Dunlop D J, Ozedemir O. Rock magnetism: Fundamentals and frontiers. Cambridge University Press, 1997. 1~573
    Ellwood B B, Crick R E, Hassani A E, et al. The magneto-susceptibility event and cyclostratigraphy (MSEC) method applied to marine rocks: Detrital input versus carbonate productivity. Geology, 2000, 28: 1135~1138
    Ellwood B B, MacDonald W D, Wheeler C, et al. The K-T boundary in Oman: Identified using magnetic susceptibility field measurements with geochemical confirmation. Earth and Planetary Science Letters, 2003, 206: 529~540
    Ellwood B B, Harrold F B, Benoist S L, et al. Magnetic susceptibility applied as anage-depth-climate relative dating technique using sediments from Scladina Cave, a Late Pleistoncene cave site in Belgium. Journal of Archaeoloical Science, 2004, 31, 283~293
    Evans M E, Heller F. Environmental magnetism: Principles and applications of environmagnetism. Academic Press, 2003. 1~299
    Fike D A, Grotzinger J P, Prattl M, et al. Oxidation of the Ediacaran Ocean. Nature, 2006, 444: 744~747
    Folk R L, Land L S. Mg/Ca Ratio and salinity: Two controls on crystallization of dolomite. Am. Assoc. Petrol. Geol. Bull., 1975, 59: 60~68
    Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 1979, 43: 1075~1090
    Hendry J P. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology, 1993, 40: 86~106
    GivenR K, Wilkinson B H. Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation. Journal of Sedimentary Petrology, 1976, 57: 1068~10787
    Gregg J M, Sibley D F. Epigenetic dolomitization the origin of xenotopic dolomite texture. Journal of Sedimentary Petroleum, 1984, 54: 907~931
    Hunger S, Benning L G. Greigite: A true intermediate on the polysulfide pathway to pyrite. Geochem Trans, 2007, 8(1), Doi: 10.1186/1467-4866-8-1
    Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications. Geology, 2003b, 31: 917~920
    Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 2006a, 76: 978~995
    Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep oceanδ13C gradient. Earth and Planetary Science Letters, 2007, 261(1-2): 303~320
    Jenkins R J, Cooper J A, Compston W. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. J. Geol. Soc. (Londn.), 2002, 159: 645~658
    Kao S J, Horng C S, Roberts A P, et al. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 2004, 203: 153~168
    Karlin R, Levi S. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 1983, 303: 327~330
    Karlin R, Levi S. Geochemical and sedimentological control on the magnetic properties of hemipelagic sediments. Journal of Geophysical Research, 1985, 90: 10373~10392
    Karlin R. Magnetic mineral diagenesis in suboxic sediments at Bettis site W~N, NE Pacific Ocean. Journal of Geophysical Research, 1990a, 95: 4421~4436
    Karlin R. Magnetite diagenesis in marine sediments from the Oregon continental margin. Journal of Geophysical Research, 1990b, 95: 4405~4419
    Kasten S, Zabel M, Heuer V, et al. Processes and signals of nonsteady state diagenesis in deep-sea sediments and their pore waters. In: Wefer G, Mulitza S, Ratmeyer V, eds. The south Atlantic in the Late Quaternary: Reconstruction of material budgets andcurrent systems. Berlin: Springer-Verlag, 2003. 431~459
    King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials. Earth and Planetary Science Letters, 1982, 59: 404~419
    Land L S. Failure to precipitate dolomite at 25℃from dilute solutions despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 1998, 4: 361~368
    Lanson B. Diagenetic smectite-to-illite transition in clay-rich sediments: a reappraisal of x-ray diffraction results using the multi-specimen method. American Journal of Science, 2009, 309(6): 476~516
    Lippmann F. Sedimentary carbonate minerals. Berlin: Springer-Verlag, 1973. 1~228
    Liu J, Zhu R X, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. Journal of Geophysical Research, 2004, 109, B03103, doi: 10.1029/2003JB002813
    Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 1990, 17: 159~162
    Ma G, Lee H, Zhang Z. An investigation of the age limits of the Sinian System in south China. Bull. Yichang Inst. Geol. Miner. Resour., 1984, 8: 1~19
    Machel H G, Mountjoy E. Chemistry and environments of dolomitization—A reappraisal. Earth Science Reviews, 1986, 23: 175~222
    Maloof A C, Kopp R E, Grotzinger J P, et al. Sedimentary iron cycling and the origin and preservation of magnetization in platform carbonate muds, Andrso Island, Bahamas. Earth and Planetary Science Letters, 2007, 259:581~598
    Mazzullo S J. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 2000, 70(1): 10~23
    Mcfadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. PNAS, 2008, 105(9): 3197~3202
    Morrow D W. Dolomite—Part 1: The chemistry of dolomitization and dolomite precipitation. Geoscience Canada, 1990a, 4: 125~139
    Nawrocki J, Polechonska O, Werner T. Magnetic susceptibility and selected geochemical-mineralogical data as proxies for Early to Middle Frasnian(Late Devonian) carbonate depositional settings in the Holy Cross Mountains, southern Poland. Palaeography,Palaeoclimatology, Palaeoecology, 2008, 269: 176~188
    Ortega B, Caballero M, Lozano S, et al. Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East-Central Mexico. Earth and Planetary Science Letters, 2006, 250: 444~458
    Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth., 2003, 28: 659~667
    Poerson B. The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, 1981, 28: 601~610
    Pytkowicz R M, Hawley J E. Bicarbonate and carbonate ion pairs and a model of seawater at 25℃. Limnology and Oceanography, 1974, 19: 223~232
    Rao V P, Kessarkar P M, Patil S K, et al. Rock magnetic and geochemical record in a sediment core from the eastern Arabian Sea: Diagenetic and environmental implications during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270: 46~52
    Roberts A P. Magnetic characteristics of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 1995, 134, 227~236
    Roberts A P, Stoner J S, Richter C. Diagenetic enhancement of sapropels from the eastern Mediterranean Sea. Marine Geology, 1999, 153: 103~153
    Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 2005, 231: 263~277
    Robinson S G, Sahota J T S. Rock magnetic characterization of early redoxomorphic diagenesis in turbiditic sediments from the Madeira Abyssal Plain. Sedimentology, 2000, 47(2): 367~394.
    Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters, 2006, 241: 119~137
    Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 2009, 277: 223~235
    Sagnotti L, Winkler A. Rock magnetism and paleomagnetism of greigite bearing mudstones in the Italian peninsula. Earth and Planetary Science Letters, 1999, 165:67~80
    Sahota J T S, Robinson S G, Oldfield F. Magnetic measurements used to identify paleoxidation fronts in deep-sea sediments from the Madeira Abyssal Plain .Geophysical Research letters, 1995, 22(15): 1961~1964
    Sawaki Y, Ohno T, Tahata M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 2010, 176: 46~64
    Schneider J, Wall H D, Kontny A, et al. Magnetic susceptibility variations in carbonates of the La Vid Group(Cantabrian Zone,NW-Spain) related to burial diagenesis. Sedimentary Geology,2004, 166: 73~88
    Sibley D F, Gregg J M. Classification of dolomite rock textures. Journal of Sedimentary Petroleum, 1987, 57: 967~975
    Slaughter M, Hill R J. The influence of organic matter in organogenic dolomitizatio. Journal of Sedimentary Petrology, 1991, 61: 296~303
    Stage M. Signal analysis of cyclicity in Mastrichtian pelagic chalks from the Danish North Sea. Earth and Planetary Science Letters, 1999, 173: 75~90.
    Stage M. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth and Planetary Science Letters, 2001, 188: 17~27
    Stockhausen H, Thouveny N. Rock-magnetic properties of Eemian maar lake sediments from Massif Central, France: A climatic signature? Earth and Planetary Letters, 1999, 173: 299~313
    Thompson R, Oldfield F. Environmental magnetism. London: Allen & Unwin, 1986. 1~227
    Torri M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples. Geophysical Research Letters, 1996, 23: 1813~1816
    Tucker M, Wright V P. Carbonate sedimentology. Oxford, Blackwell, 1990. 1~ 482
    van Ltih Y, Vasconcelos C, Warthmann R, et al. Bacterial sulfate reduction and salinity: Two control on dolomite precipitation in Lagoa Bermelha and Brejo do Espinho(Brazil). Hydrobiologoa, 2002, 485: 35~49
    van Ltih Y, Warthmann R, Vasconcelos C, et al. Sulphate-reducing bacteria induce low-temperature dolomite and high Mg-calcite formation. Geobiology, 2003, 1: 71~79
    Vasconcelos C, Mckenzie J A, Bernaconi S, et al. Microbial mediation as a possible mechanism for nature dolomite formation at low temperature. Nature, 1995, 377: 220~222
    Vasconcelos C, Mckenzie J A. Microbial mediation of moderndolomite precipitation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Bruzil. Journal of Sedimentary Research, 1997, 67: 378~390
    Vasconcelos C, Warthmann R, Mckenzie J A, et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? Sedimentary Research, 2006, 183(3-4): 175~183
    Wacey D, Wright D T, Boyce A J. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chemical Geology, 2007, 244: 155~174
    Warren J. Dolomite: Occurrence, evolution and economically important associations. Earth Science Reviews, 2000, 52: 1~81
    Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 2000, 28, 1091~1094
    Wright D T. An organogenic origin for widespread dolomite in the Cambrian Eilean Dubh formation, North-western Scotland. Journal of sedimentary Research, 1997, 67: 54~64
    Wright D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 1999,126, 147~157
    Wright D T, Wacey D. Sedimentary dolomite: A reality check. In: Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geol. Soc. Lond. Spec. Pub, 2004, 235: 65~74
    Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from Coorong Region, South Australia: Significance and implications. Sedimentology, 2005, 52: 987~1008
    Xiao S H, Knoll A H. Phosphatized animal embryos from the Neoproterzoic Doushantuo Formation at Weng’an, Guizhou, south China. Joural of Paleontology, 2000, 74(5): 767~788
    Xiao S H. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges area, South China). Journal of Paleontology, 2004, 78: 393~401
    Yin C. Microfossils from the Upper Sinian (Late Neoproterozoic) Doushantuo Formation in Changyang, western Hubei, China. Continental Dynamics, 1999, 4: 1~18
    Yin C, Liu D, Gao L, et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP dating. Chin. Sci. Bull., 2003, 48, 1657~1662
    Zhang S H, Jiang G Q, Zhang J, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473~476
    Zhang S H, Jiang G Q, Han Y G, et al. The age of Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20(4): 289~294
    Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications. Marine Geology, 2010, 268: 34~42
    Zhou C, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 2004, 32: 437~440
    Zhu M, Strauss H, Shields G A. From snowball earth to Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 1~6
    Zhu M Y, Zhang J M, Yang A H. Intergrated Ediacaran(Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 7~61
    白凌燕.宜昌陡山沱组碳酸盐岩岩石磁学研究:[硕士学文论文].北京:中国地质大学(北京),2007
    程峰,刑德敬.阴极发光技术在储层研究中的应用.断块油气田,1998,5(6):17~19
    陈丽华,郭舜玲,王衍琦,等.中国油气储层研究图集(第五卷):自生矿物、显微荧光、阴极发光.石油工业出版社,1994. 298~436
    方少仙,董兆雄,候方浩,等.层状白云岩储层特征与成岩——以黔贵地区泥盆系、石炭系及湘鄂交界地区三叠系为例.地质出版社,1999. 1~115
    葛淑兰,石学法,吴永华,等.冲绳海槽北部CSH1孔岩石磁学特征及其早期成岩作用的影响.海洋学报,2005,27(7):56~64
    胡守云,邓成龙,Appel E,等.湖泊沉积磁学性质的环境意义.科学通报,2001,46(17):1491~1494
    胡守云,Appel E,Hoffmann V,等.湖泊沉积物中胶黄铁矿的鉴出及其磁学意义.中国科学(D辑),2002,32(3):234~238
    黄思静.碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系.矿物岩石,1992,12(4):74~79
    黄思静,Hairuo Q,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响.沉积学报,2007,25(6):815~824
    黄思静,王春梅,黄培培,等.碳酸盐成岩作用的研究前沿和值得思考的问题.成都理工大学学报(自然科学版),2008,35(1):1~10
    李海燕,张世红,方念乔,等.孟加拉湾MD77-181岩芯磁学记录及其古环境意义.科学通报,2006,51(18):2166~2174
    李海燕,张世红,方念乔.东帝汶海MD9802172岩芯磁记录与还原成岩作用过程.第四纪研究,2007,27(6):1021~1030
    蒋干清,史晓颖,张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐.科学通报,2006,51(10):1121~1138
    蒋干清,张世红,史晓颖,王新强.华南埃迪卡拉纪陡山沱盆地氧化界面的迁移与碳同位素异常.中国科学(D辑),2008,38(12):1481~1495
    刘健.磁性矿物还原成岩作用述评.海洋地质与第四纪地质,2000,20(4):103~107
    刘健,朱日祥,李绍全,等.南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应.中国科学(D辑),2003,33(6):583~592
    刘洁,皇甫红英.碳酸盐矿物的阴极发光性与微量元素的关系.沉积与特提斯地质,2000,20(3):71~76
    刘鸿允.中国震旦系.北京:科学出版社,1991. 1~48
    施春华,颜佳新,韩欣.早期成岩作用过程中硫酸盐还原反应研究进展.广西地质,2001,14(1):21~26
    宋志敏.阴极发光地质学基础.中国地质大学出版社,1993. 1~190
    汤朝阳,王敏,姚华舟,等.白云石化作用及白云岩问题研究述评.动画理工学院学报,2006,29(3):205~210
    汤冬杰,史晓颖,刘娟,等.华北地台串岭沟组砂脉中自生碳酸盐沉淀和自生黄铁矿——中元古代甲烷厌氧氧化的沉积证据.古地理学报,2009,11(4):361~374
    王红强,张世红,李海燕.北京北安河地表沉积物的岩石磁学特征及环境意义.科学通报,2008,53(13):1589~1597
    王衍琦,张绍平,应凤祥.阴极发光显微镜在储层研究中的应用.石油工业出版社,1996.1~136
    王一刚,文应初,洪海涛,等.四川盆地三叠系飞仙关组气藏储层成岩作用研究拾零.沉积学报,2007,25(6): 831~839
    王英华.阴极发光技术在地质学中的应用.地质出版社,1990. 1~104
    徐慧芬.阴极发光技术在岩石学和矿床学中的应用.地质出版社,2006. 1~78
    姚泾利,王宝全,王一刚,等.鄂尔多斯盆地下奥陶统马家沟组五段白云岩的地球化学特征. 沉积学报,2009,27(3):381~389
    尹崇玉,刘鹏举,陈寿铭,等.峡东地区埃迪卡拉系陡山沱组疑源类生物地层序列.古生物学报,2009,48(2):146~154
    张卫国,贾铁飞,陆敏,等.长江口水下三角洲Y7柱样磁性特征及其影响因素.第四纪研究,2007,27(6):1063~1071
    张学丰,胡文瑄,张军涛.白云岩成因相关问题及主要形成模式.地质科技情报,2006,25(5):32~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700