用户名: 密码: 验证码:
非接触涡流负压搬运器的流场特性及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业制造过程中,非接触搬运技术由于其无接触、无表面擦伤、无静电等优点具有广泛的应用前景和重要的研究意义。目前非接触搬运技术主要有电磁式、超声波式和空气悬浮式等几种方式。其中,空气悬浮技术又分为空气吹浮式和负压吸附式,本文针对非接触涡流负压搬运器的流场特性进行了如下工作:
     首先,阐述了非接触涡流负压搬运器的工作原理,并推导出流场内径向压力分布公式。将其结果与仿真结果、实验结果进行了对比,三者的吻合性较好,验证了所推导压力公式的正确性。
     其次,采用gambit建立不同结构搬运器三维流场仿真模型,采用非结构化网格划分方法;在FLUENT软件中采用RNG k-ε湍流模型进行流场计算;对不同工况条件下的压力场,速度场、提升力等特性进行了分析,获得了涡流吸附负压效应影响因素和变化规律。
     此外,为验证理论数值仿真的正确性,设计并搭建了压力、提升力测试实验台,分别对不同结构搬运器及不同工况下搬运器的压力分布、提升力等特性进行了实验测试,并将实验结果与理论计算、仿真结果进行对比。
     最后,设计并制作了由多个相同结构搬运器组成的搬运盘,并搭建了搬运实验台,进行了搬运效果的测试,实验验证了非接触负压搬运的可行性。
In the industrial manufacturing process, the non-contact handling technology has wide application prospects and important insignificance of research because of its advantages such as non-contact, no surface scratching and no static electricity. Now the non-contact handing technologies having been adopted are mainly electromagnetic, ultrasonic, air suspension, etc. The air suspension technology is divided into two types: blowing and negative pressure adsorption. In this paper, the following works were conducted about the flow characteristics of non-contact vortex negative pressure carrier:
     First, the working principle of non-contact vortex negative pressure carrier was stated and the radial pressure distribution formula of flow field was derived. The results were compared with simulation and experiment results, it is noted that the curves anastomose preferably well with each other. And the comparison verified the accuracy of the deduced pressure distribution formula.
     Second, the three-dimensional flow field simulation models based on the different structural carriers were built with the Gambit software, and unstructured grids were used; the RNGκ-εturbulent model provided by the FLUENT software was chose for calculation. Based on the calculation results, the analysis on the pressure field, velocity field and absorbability was conducted in different working conditions. At last, the influence factors and variation rules of vortex adsorption negative pressure effect were obtained.
     In addition, in order to verify the accuracy of the theoretical simulations, the pressure and the lifting force experiment rigs were designed and built. The experiment on the pressure field and the lifting force of different structural carrier was conducted in different working conditions, and the experiment results were compared with the theoretical calculation and simulation results.
     At last, the handling plate composed by a number of the same structure carrier was designed and made, the handling experiment was built for the test of the handling effect. The experiment verified the feasibility of non-contact negative pressure handling.
引文
[1]门连通,白淑璠,非接触式搬运设备在液晶物流中的应用.物流技术2006,(5):27-29.
    [2]罗清岳.非接触性大型玻璃基板搬运技术.国际光电与显示,2007,(6):61-63.
    [3]王涛,杨玉贵,彭光正.半导体及平板显示制造业中的空气非接触搬运技术.液晶与显示.2009,(3):404-408.
    [4]http://chinaem.com.cn/bencandy.php?fid=37&id=2830
    [5]杨尔庄,沙宝森,陈寿德.日本国际流体动力展览会观感.中国液压气动密封件工业协会.100823.
    [6]http://baike. baidu.com/view/1472.htm?fr=ala0_1_1
    [7]董守聪.玻璃基板市场及展望[J].玻璃,2007(4):3-4.
    [8]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Analysis of vortex levitation. Experimental Thermal and Fluid Science 32(2008)1448-1454.
    [9]http://www.chinaforklift.com/news/detai1/200904/24055. html
    [10]丛明,徐晓飞,刘静等.FPD玻璃基板搬运机器人研究.机器人技术与应用.2008(4)34-38
    [11]徐晓飞.玻璃基板搬运机器人轨迹规划与控制系统研究.硕士学位论文.大连理工大学.2008:2-4
    [12]刘华明,曾孔庚.针对液晶玻璃基板搬运的洁净机器人技术[J].机器人技术与应用.2007,9:5-7.
    [13]http://www.chinavalue.net/Media/Article.aspx?ArticleId=19027&PageId=4
    [14]http://baike.baidu.com/view/76100.htm?fr=ala0_1
    [15]R. L. Guldi, M. T. Whitfield, F. D. Poag:Strategy and metrics for wafer handling automation in legacy semiconductor fab, IEEE Transactions on Semiconductor, Vol.12, No. 1, pp.102-108,1999.
    [16]Hiromitsu Tokisue, Kazuhiko Matsuoka. Development of Non-contact Handling System for Semiconductor Wafers. Elctronic Maunfacturing Technology Symposium,1989, Proceeding, Japan IEMT Symposium, Sixth IEEE/CHMT International. pp:246-249
    [17]梁静,钱省三.半导体晶圆制造中的设备效率和设备能力.半导体技术.2004,29(9):35-38
    [18]http://www.jhsbw.cn/hyxx/shownews.asp?newsid=1855&typename=行业资讯
    [19]毛保华,黄荣,贾顺平.磁悬浮技术在中国的应用前景分析.交通运输系统工程与信息.2008,8(1):29-39
    [20]石定寰.日本中低速磁悬浮技术及其应用前景[J].交通运输系统工程与信息,2007,7(5):1-4.
    [21]郭友军,王海鹏,解文军.电磁悬浮和声悬浮过程的动态摄影研究.西北工业大学学报.2008,26(5):655-658
    [22]谢元运,韩柱亭.电磁悬浮理论及其应用展望.辽宁建筑工程学院学报.1984(2):1-30
    [23]钟晓燕,陈佳圭.空间电磁悬浮技术的发展状况.物理.1996,25(9):565-570
    [24]吴兰.磁悬浮与光电反馈式静电悬浮.光学仪器.1999,21(3):20-24
    [25]刘壮,方攸同.单磁铁的静态磁场和悬浮力分析.机电工程.2007,24(12):44-46
    [26]王新杰.光电反馈式静电悬浮技术研究.硕士学位论文.杭州:浙江大学,2002
    [27]胡亮,鲁晓宇,侯智敏.静电悬浮技术研究进展.实验技术,2007,36(12):944-949
    [28]杨晓光,鲁晓宇,曹崇德.材料静电悬浮控制系统的设计与应用.西北工业大学学报.2009,27(3):342-346
    [29]魏炳波.奇妙的声悬浮现象.知识旋宫.1999:18-19
    [30]解文军,魏炳波.声悬浮研究新进展.物理.2002,31(9):551-554
    [31]解文军.声悬浮优化设计理论及其应用研究.博士学位论文.西安:西北工业大学.2002
    [32]我国声悬浮研究取得重要进展.自然科学进展.2002,12(1):100,107
    [33]杨学实.气悬浮列车研究的新进展.交通运输系统工程与信息.2003,3(3):66-70
    [34]Geim AK, SimonM D, BoamfaM Ietal. Nature,1999,400(6742):323
    [35]我国发明气悬浮车.科技创新.2003(6):20
    [36]S. Davis, J.O. Gray, D. G. Caldwell, An end effector based on the Bernoulli principle for handling sliced fruit and vegetables, Robotics and Computer-Integrated Manufacturing 24 (2) (2008) 249-257.
    [37]Li Xin, Kawashima Kenji, Kagawa Toshiharu. Modeling of non-contact handling device by using air swirling flow [C]//Proceeding of6th EUROSIM Congress on Modelling and Simulation, Ljubljana, Slovenia:Slovejan Society for Modeling and Simulation SLOSIM and Ljubljana Faculty of Electrical Engineering,2007.
    [38]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Dynamic Characteristics of Vortex Levitation.2008 Asia Simulation Conference - 7th Intl. Conf. on Sys. Simulation and Scientific Computing,1175-1179
    [39]Xin Li, Kenji Kawashima, Toshiharu Kagawa.. Dynamic Modeling of Vortex Levitation. 2008 Asia Simulation Conference - 7th Intl. Conf. on Sys. Simulation and Scientific Computing,218-224
    [40]V. Vandaele, P. Lambert, A. Delchambre:Non-contact handling in microassembly. Precision Engineering, Vol.29, No.4, pp.491-505,
    [41]http://www.si-gang.net/html-news/news-1268297075133975-1. html
    [42]http://www.laogu. com/wz_91027502. htm
    [43]http://news.shebei114.com/detai1/83-23280. html
    [44]http://www.gongkong.com/Common/Details.aspx?c=&m=&Type=product&Id=2009061815423700 003
    [45]http://www.m188.com/newsinfo/2008-12-1/2008121-1253192606168.html
    [46]http://www.hkmachine.com.hk/newspage.asp?id=9167
    [47]http://news.ccidnet.com/art/1032/20081021/1595641_1.html
    [48]孔珑.流体力学.北京:高等教育出版社.2004.6
    [49]丁祖荣.流体力学.北京:高等教育出版社.2003.12
    [50]张亮,李云波.流体力学.哈尔滨:哈尔滨工程大学出版社.2001.3
    [51]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社.2004.9
    [52]孙文策.工程流体力学.大连:大连理工大学出版社.2003.8
    [53]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社.2004
    [54]王瑞金,张凯,王刚.Fluent技术基础与应用实例.北京:清华大学出版社.2007.2
    [55]钟英杰,都晋燕,张雪梅.CFD技术及在现代工业中的应用.浙江工业大学学报.2003(03)
    [56]吴子牛.计算流体力学基本原理.北京:科学出版社.2001.02
    [57]江帆,黄鹏.Fluent高级应用与实例分析.北京:清华大学出版社.2008.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700