用户名: 密码: 验证码:
磁悬浮系统定量反馈控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用磁力使物体无接触地悬浮起来是人类的一个古老的梦。近年来,磁悬浮技术由于其无接触、低机械损耗、高寿命、无需润滑剂等特点,越来越受到人们的重视,广泛应用于磁悬浮列车、磁悬浮承轴等领域。但磁悬浮系统由于其模型的不确定性,对其的控制一直是控制界的一大难题。
     本文针对磁悬浮系统固有的非线性、对象不确定等特性,结合定量反馈理论可处理对象不确定性的优势,对基于定量反馈理论的磁悬浮控制器设计进行研究。文中首先分析了磁悬浮系统的模型,辨识了系统关键参数,并校正了系统传感器和线圈执行器的非线性,得出了在系统传感器、线圈执行器非线性校正和重力补偿基础上,系统的数学模型。再根据ECP Model 730磁悬浮系统的实际情况,给出其参数不确定的范围,结合给定的设计性能指标,运用定量反馈理论设计了系统反馈控制器和前置滤波器,并在Matlab Simulink仿真环境中,仿真验证了控制器设计的有效性。最后,对Model 730磁悬浮系统,编写了实际控制程序,进行了实际调试,获得了较为理想的控制效果。
Using magnetic force to make up an object suspended without contact is an ancient dream of humanity. In recent years, because of the features of non-contact, low mechanical loss, long life and no lubricants, magnetic levitation technology has got more and more attention, and been widely used in magnetic levitation trains, magnetic levitation bearing axis and so on. But, due to the uncertainty of the magnetic levitation system model, its control has been a major problem in the control field.
     In this paper, according to the inherent nonlinear and the object uncertainty of magnetic levitation system, a magnetic suspension control system is designed using quantitative feedback theory because of its advantages of dealing with uncertain objects. Firstly, the model of the suspension system is analyzed and the key system parameters are identified. Then, the mathematical system model is got based on compensations of the system sensors, actors and gravity. Secondly, according to the actual situation of ECP Model 730 magnetic levitation system, the scope of its parameter uncertainty is given and a system controller and prefilter is designed according to the design target using quantitative feedback theory. Then, a simulation is done in the Matlab Simulink simulation environment and the result shows the effectiveness of the control system design. Finally, On the Model 730 magnetic suspension system, the actual control procedures are prepared and the actual commissioning is done. And the good control effect is got.
引文
[1]戴政.磁悬浮技术综述[J].中小型电机,2000,27(2):24-26.
    [2]张士勇.磁悬浮技术的应用现状与展望[J].工业仪表与自动化装置,2003,3:63-65.
    [3]蒋金周.磁悬浮及其应用与发展分析[J].机电一体化,2004,1:25-27.
    [4]李强北.国外磁浮列车述评(上)[J].国外铁道车辆,1996,4:1-8.
    [5]Hartavi A. E, Ustun O, Tuncay R. N. The design, simulation and experimental study of active magnetic bearing[C]. Electric Machines and Drives Conference,2001: 492-495.
    [6]Marry Humphrey, Edgar Hilton, Paul Allaier. Experiences using RT-Linux to implement a controller for a high speed magnetic bearing System[C]. Proc 5th IEEE Real-Time Technology and Applications Symposium,1999:121-130.
    [7]谢宝昌,任永德,王庆文.磁悬浮电机及其应用的发展趋势[J].微电机,1999,32(6):28-30.
    [8]邓水权,罗世辉.单磁铁系统的稳定性与仿真分析[J].电力机车与城轨车辆,2005,28(5):44-46.
    [9]余龙华,柳贵东.单铁磁悬浮控制系统的动力学特性研究[J].电力机车与城轨车辆,2006,29(3):17-19.
    [10]汤洁,李训铭.单自由度磁悬浮系统的状态反馈控制[J].计算机测量与控制,2005,13(5):472-474.
    [11]蔡佳妮,林小玲,袁开茂.磁浮球模型分析与控制器参数整定[C].全国直线电机学术年会论文集,2004:125-133.
    [12]刘恒坤,郝阿明,常文森.磁悬浮系统的非线性PID控制[J].控制工程,2007,6(14):653-656.
    [13]刘恒坤,常文森.磁悬浮系统的简单自适应控制[J].电光与控制,2005,2(12):68-72.
    [14]刘茹.磁浮列车悬浮系统PID自整定控制研究[D].成都:西南交通大学,2007.
    [15]Agus Trisanto, Jiunshian Phuah, Jianming Lu, Takashi Yahagi. The use of NNs in MRAC to control nonlinear magnetic levitation system[C]. IEEE International Symposium,2005,4:3051-3054.
    [16]Jiunshain Phuah, Jianming Lu, Muhammad Yasser, Takashi Yahagi. Neuro-sliding mode control for magnetic levitation systems[C]. IEEE International Symposium, 2005,5:5130-5133.
    [17]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [18]刘德生,尹力明,余龙华.Fuzzy-PID控制算法在磁悬浮系统中的应用[J].计算机测量与控制,2002,10(6):375-377.
    [19]宋召青,毛剑琴.磁悬浮球实验系统的模糊控制仿真[J].计算机仿真.2002,19(6):39-40.
    [20]张吉礼.模糊—神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [21]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [22]吴麒.自动控制原理[M].北京:清华大学出版社,1999.
    [23]肖经伟,尹力明.非线性控制在磁悬浮系统中的应用[J].国防科技大学学报,1999:,21(6):106-108.
    [24]曹学余,汤炳新.磁悬浮球系统的变结构控制[J].控制理论与应用,2005,24(4):4-6.
    [25]佛显超,谢红卫.磁悬浮自适应性控制[J].自动化仪器仪表,2002,1:23-26.
    [26]Kemin Zhou. A natural approach to high performance robust control:another look at youla parameterization[C]. Proceedings of SICE Annual Conference,2004:869-874.
    [27]肖永利,张琛,陈文华.定量反馈理论(QFT)及其设计应用[J].信息与控制,1999,28(6):437-445.
    [28]Horowitz. Quantitative feedback theory [C]. IEE Proceedings,1982,129(6):215-226.
    [29]花迩蒙,王永,梁青.H∞回路成形和定量反馈理论的直升机控制器设计[J].电光与控制,2007,1(14):87-90.
    [30]Horowitz. Quantitative feedback theory(QFT)[C]. American Control Conference, 1988:2032-2037.
    [31]谢晓竹,刘藻珍,刘敏.定量反馈理论和神经网络的融合控制与仿真[J].系统仿真学报,2009,1(21):312-315.
    [32]王增会,陈增强,孙青林,袁著祉.定量反馈理论发展综述[J].控制理论与应用,,2006,23(3):403-410.
    [33]陈增强,王增会,孙青林,袁著祉.基于定量反馈理论(QFT)的控制系统设计[C]. Chinese Control Conference,2005:550-553.
    [34]朱永文,王洁,王君.基于Matlab语言定量反馈控制器的分析与设计[J].计算机测量与控制,2002,10(12):822-824.
    [35]Zhao Y, Jayasuriya S. Robust stabilization of uncertain systems with parametric uncertainties[C]. Proc 12th IFAC Conf on World Congress,1993,6:31-34.
    [36]Jayasuriya S, Franchek M. A. Frequency domain design for maximal rejection of persistent bounded disturbances[J]. Measurement and Control,1991,113(2):195-205.
    [37]Eduard E. Quantitative feedback design for tracking error tolerance[J]. Automatica, 2000,36(2):319-326.
    [38]王增会,陈增强,孙青林,袁著祉.融合GPC和QFT对不确定性系统的鲁棒控制[J].控制工程,2005,4(12):313-316.
    [39]Vincent C, Emmanuel G, Jerome B. QFT controller optimization for automatic design[C]. Proc of the 39th IEEE Conference on Decision and Control,2000: 4735-4740.
    [40]Nandakumav R, Halikias G. D, Zolotas A. C. An optimization algorithm for designing fixed-structure controllers using the QFT method[C].2002 IEEE Int Symposium on Computer Aided Control System Design Proceedings Glasgow,2002:157-162.
    [41]吴博.基于定量反馈理论的飞行模拟器运动平台控制系统研究[D].哈尔滨:哈尔滨工业大学,2007.
    [42]张庆振.QFT/TECS在飞行自动着落控制中的应用研究[D].西安:西北工业大学,2004.
    [43]Horowitz. Survey of Quantitative feedback (QFT) [J]. Int J Control,1991,53(2): 255-291.
    [44]Houpis C.H. Editorial[J]. Int J Robust Nonlinear Control,1997,7(6):513-514.
    [45]苏晓生.Matlab5.3实例教程[M].北京:中国电力出版社,2000.
    [46]王蕾.QFT在飞行控制系统中的应用[D].西安:西北工业大学,2007.
    [47]Horowitz. Optimum loop transfer function on single-loop minimum-phase feedback system[J]. Int J Control,1973,18(1):97-113.
    [48]Horowitz, Sidi M. Optimum synthesis of non-minimum phase feedback systems with plant uncertainty[J]. Int J Control,1978,27(3):361-386.
    [49]Gera A, Horowitz. Optimization of the loop transfer function[J]. Int J Control,1980, 31(2):389-398.
    [50]Ma Juanli, Song Yongxian, Qin Xuping. Robust control design of the robot joint based on QFT[C].2009 Third International Conference on Genetic and Evolutionary Computing,2009:173-176.
    [51]胡寿松.自动控制原理[M].第4版.北京:科学出版社,2001.
    [52]Educational Control Products, California, USA. Manual for Model 730[K]. Magnetic Levitation System,1999.
    [53]Qingwei Wang, Zhenghua Liu, Lianjie Er. Automatic design of QFT robust controller based on genetic algorithms[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006:2272-2276.
    [54]Roozbeh Kianfar, Torsten Wik. Automated Controller Design using Linear Quantitative Feedback Theory for Nonlinear systems[C].2009 IEEE International Conference on Control and Automation,2009:1955-1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700