用户名: 密码: 验证码:
山西中条山桐木沟、篦子沟铜矿床地质特征及成矿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中条山桐木沟、篦子沟铜矿床位于山西省南部的垣曲县境内,因成矿条件相似,与南和沟、老宝滩铜矿床并称为胡-篦型铜矿床。但对矿床成因却存在分歧,早期有火山-沉积变质成因论;混合热液成因论;远火山沉积变质-再造热液成因论;内源沉积再造论等观点,但目前已经趋向于热水喷流成因。
     矿体呈层状,似层状,严格受地层岩性控制。矿石中的金属矿物以黄铜矿、黄铁矿、磁黄铁矿为主。矿区发育的不纯白云石大理岩、硅质钠长质岩经分析表现出典型的热水喷流岩的特点。
     本文在分析研究桐木沟、篦子沟铜矿成矿地质背景的基础上,通过野外调研、岩矿综合鉴定、岩石地球化学等方法和手段,详细研究了该矿床的矿床地质特征、含矿岩系的地球化学特征及其形成的大地构造环境,通过对稳定同位素和流体包裹体的研究确定成矿物质以及成矿流体的主要来源,分析成矿作用的机制和过程,确定桐木沟、篦子沟铜矿矿床成因类型并建立成矿模式。
Tongmugou and the Bizigou Cu-deposits are located in Yuanqu county, Shanxi province. Tectonically, they occur in the intersection area of the Zhongtiao trigeminal rift on southern margin of the North China craton. Zhongtiaoshan Cu-orefield is one of the most notable ore-concentrated areas in China with various deposit types due to complicated mineralization environment, which together constituting Hu-Bi type deposits, characterized by copper enrichment and paragenesis with Au, Ag, Co and other valuable components.
     This paper presents tectonic settings, physical and chemical conditions, mineralization patterns and models of these deposits, based on field works and testing analysis including rock ore appraisal, ICP-MS analysis and fluid inclusion analysis. Strata in mining area are dominated by Paleoproterozoic Zhongtiao formation, from lower to upper, including Jiepailiang group (quartzite), Longyu group (slate), Yuyuanxia group (marble), Bizigou group (schist) and Yujiashan group (marble), among which, Yuyuanxia, Bizigou and Yujiashan group are involved with mineralization.
     The studying area has undergone volatile metamorphism and deformation during Precambrian, forming nearly S-N striking Hujiayu-Shangyupo superimposed fold and fracture system. The core components of the superimposed fold are dominated by metabasic volcanic rocks, mafic intrusive rocks of Jiangxian group and Beiyu granite. Its southeast flank is marked by Zhongtiao group while the northwest flank marked by the lower strata of Zhongtiao group. The axis of the anticline is NNE-trending in middle section, NEE-trending in north section and SW-trending in south section, presenting“S”shape as a whole. The Hubi type Cu-deposits occur in eastern and southern Shangyupo-Hujiayu anticline. Bizigou deposit occurs within the east flank of the anticline and Tongmugou deposit is distributed at the end of southern anticline.
     Ore mineral assemblage consists of chalcopyrite, pyrite, pyrrhotite and molybdenite. gangue assemblage includes calcite, quartz, biotite, albite, sericite and chlorite. Hydrothermal alteration in Tongmugou Cu-deposit occurs as silicification, sericitization, biotitization and carbonatization, and in the Bizigou Cu-deposit presents as intense biotitization with typical silicification, sericitization, carbonatization and actinolitization.
     Mineralization in Tongmugou deposit is closely associated with albite siliceous rocks, biotite marble and black carbon mud schist intergrowth with marble in Bizigou group, while orebodies in Bizigou deposit are hosted by Yuyuanxia group (marble) and Longyu group (calcareous biotite schist). These strata exhibit SEDEX features. Study on fluid inclusion was undertaken to constrain physical and chemical conditions of ore-forming fluids.
     Hydrothermal fluids in Tongmugou deposit is recorded by vapor-liquid two phase type of fluid inclusions with 4~14um in size and 0.94~1.11 g/cm3 in density, trapped under conditions between 6% and 28% wt%NaCl. eqv, between 12 Mpa and 32Mpa with an average of 21 Mpa, in depth of 2.1km, homogenized between 120°C and 210°C, mostly concentrating in 140~150°C and 160~200°C.
     Two types of fluid inclusions with 4 to 14 um in size are recognized in the Bizigou deposit: vapor-liquid two-phase type and daughter minerals-bearing three- phase type. Fluid inclusions are characterized by 10 - 28 wt. % NaCl equiv in salinity in two-phase type and 28%~32%wt%NaCl in three-phase type, they were trapped under conditions of 0.96~1.16 g/cm3 in density, 10~30Mpa in pressure with an average of 22 Mpa and 2.3km in depth. Vapor-liquid fluid inclusions homogenized between 120°C and 210°C, mostly concentrated in 150~200°C, representing the temperature of mineralization.
     The components of fluid inclusions are dominated by cation of Na+, K+, Ca+ and Mg+ with minor Li+ and anion of F-, Cl-, SO42- with minor amount of HCO3-.
     The features of exhalite and high salinity of fluid inclusions indicate the involvement of the hydrothermal fluid, probably brine, enrichment in silicon, sodium, boron, magnesium, carbonate and sulphide.
     Based on the above analysis, we propose an alternative metallogenic model as follows:
     In Zhongtiao area, magmatic activity facilitated to form Hu-Bi thermal field, driving the seawater to cycle and heating it to about 200°C. The heating fluid interacted with surroundings, ejected from the submarine and formed the exhalative rock. Under the continuing effect of thermal field, the hydrothermal fluid changed its nature components due to involvement of vast seawater and progressively higher temperature, leading to the decline of PH value, which in favor of leaching copper from the surrounding rock. Copper-bearing hydrothermal fluid ejected from seabed, and the copper precipitated. With the crystallization of magma, fluid temperature dropped associated with reduced leaching capacity due to the gradual decline of thermal field. Biological activity increased in the spout region due to high temperature, carbon-silicon argillite formed by exhalation carbon deposition covered the ore-bearing rock series, indicating the end of the exhalative process.
引文
[1] A Preliminary Study on Fluid Inclusions and Mineralization of Xitieshan Sedimentary-Exhalative (SEDEX) Lead-Zinc Deposit[J].Acta Geologica Sinica(English Edition),2008,(4):838-844.
    [2] Banner J.L,Hanson G.N.Calculation of simultaneous isotopic and trace element variation duringwater-rock interaction with application to carbonate diagenesis [J].Geochimica Et Cosmochimica Acta,1990,54: 3123-3137.
    [3] Hofmann AW.Chemical differentiation of the earth:the relationship between mantle,continental crust,and oceanic crust [ J ].Earth Planet Sci Lett,1988,90: 297-314.
    [4] Huaguo Wen,Rongcai Zheng,Wei Geng,Mingtao Fan,Manfu Wang.Characteristics of rare earth elements of lacustrine exhalative rock in the Xiagou Formation of Lower Cretaceous in Qingxisag,Jiuxi basin[J].2007:67-73.
    [5] Mills R A,Elderfield H.Hydrothermal activity and the geochemisty of metalliferous sediment[A].Humphris S E,Zierenberg R A,Mullineaux L S,Thomson R E. Seafloor Hyhrothermal Systems:Physical,Chemical,Biological,and Geological Interactions[M]. Washington D C:AGU Geophysical Monograph 91,1995. 392-407.
    [6] Mills R A,Elderfield H.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26N Mind-Atlantci Ridge[J].Geochim Cosmochim Acta,1995,59(17).
    [7] Marjorite W.Igneous petrogenesis [M ]. London: Unwin Hyman,1989: 191-225.
    [8] Macintyre D G.Sedex-sedimentary-exhalative deposits[A].Mcmillan W J,Hoy Macintyre D G,Nelson J L,Nixon G T, Hammack J L,Panteleyev A R G E A W I C L.Ore deposits tectonics and metallogeny in the Canadian Cordillera[M].Victoria:Queen's printer for british columbia,1992.25-66.
    [9] Ohmoto H . Systematics of sulfur and carbon isotope in hydrothermal ore deposit[J].Economic Geology And The Bulletin Of The Society Of Economic Geologists,1972,67:551-579.
    [10] Roedder E.Fluid inclusions[J].Reviews In Mineralogy.Mineral Society of America,1984:121-644.
    [11] Sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit in Yunnan Province:REE geochemical evidence[J]. Chinese Journal of Geochemistry,2007,(3):267-275.
    [12] Shinjo R,Chung S L,Kato Y,et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinwa trough and Ryukyu arc: imp lications for the evolution of a young,intracontinental back arc basin [ J ].Jorunal of Geophysical Research-Solid Earth,1999,104(B5):10591-10608.
    [13] Tunnicliffe V.The biology of hydrothermal vents:Ecology and evolution.Oceanog Mar Ann Rev,1991,29:319-407.
    [14] Volpe A M,Macdougall J D, Hawkins J W. Mariana trough basalts (MTB):trace element and Sr-Nd isotopic evidence for mixing between MORB-like and arc-like melts [ J ]. Earth Planet SciLett ,1987,82: 241-254.
    [15] WANG Yuejun,ZHAO Guochun,FAN Weiming,etal.LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: implications for back-arc basin magmatism in the eastern block,North China Craton [ J ].Precambrian Research,2007,154: 107-124.
    [16]池三川.非火山环境海底沉积——喷流“SEDEX”矿床[J].地学前缘,1994,1:183.
    [17]柴东浩.中条山铜矿地质概论[J].地质科技情报,1982(S1):63-65.
    [18]陈毓川,朱裕生等.中国矿床成矿模式[M].北京:地质出版社,1993.17-23.
    [19]岑博雄,杨勇.山西中条山胡篦型铜矿床时间结构分析及成矿演化规律[J].地球科学,1993(2):203-210+248.
    [20]段焕春.山西中条山地区金矿成矿地质条件及找矿远景[J].有色金属矿产与勘查,1999(6):498-503.
    [21]李先福,岑博雄.中条山胡-篦型铜矿床成因新认识[J].武汉化工学院学报,1993(3):66-72.
    [22]岑博雄,熊鹏飞,王定域,李志德.山西中条山胡-篦型铜矿床勘查模型系统[J].现代地质,1993(1):66-72.
    [23]冯世军.篦子沟铜矿床的背斜构造与控矿作用[J].山西冶金,2007,(1):24-26.
    [24]桂林冶金地质研究所变质铜矿专题组.山西某变质岩铜矿的岩石特征及其与成矿关系[J].地质与勘探,1974(6):1-10.
    [25]胡维兴,孙大中.中条山早元古代铜矿成矿作用与演化[J].地质科学,1987 (2):152-165+198
    [26]黄甫泽民,石岩.中条山篦子沟类型铜矿床成矿特征的初步总结[J].地质与勘探,1976(4):19-27.
    [27]韩发,葛朝华.福建马坑铁矿床海相火山热液-沉积成因地质-地球化学特征[J].中国地质科学院矿床地质研究所所刊,1983,(2):11-38.
    [28]胡维兴.关于中条山胡-篦型铜矿床成矿期和成矿时代问题[J].华北地质矿产杂志,1994(2).
    [29]胡维兴,孙大中.中条山早元古代铜矿成矿作用与演化[J].地质学报,1987,62(2)
    [30]卢焕章.成矿流体.北京:科学技术出版社.1997:120-131.
    [31]李兆龙,陈爱民,李继英.中条地区胡家峪-篦子沟型铜矿床稀土元素地球化学特征[J].地质找矿论丛,1986 (2):46-54.
    [32]李文光.山西省中条山铜矿带胡-篦型矿床成矿构造特征研究[D].中南大学,2007.
    [33]李先福,谭少华,孔东军.山西中条山胡-篦型铜矿篦子沟组含矿岩系的解体与重建[J].现代地质,1990(3):70-80.
    [34]刘亮明,陈国达,彭省临,杨牧.中条山地区地壳递进演化与胡-篦型铜矿床的成因[J].中南工业大学学报(自然科学版),1999(4).
    [35]梅华林.中条山早元古代变质岩石的PTt轨迹和构造演化[J].地质论评,1994(1):36-47+97.
    [36]裴荣富.中国矿床模式[M].北京:地质出版社,1995.39-42.
    [37]彭润民,翟裕生.内蒙古狼山—渣尔泰山中元古代被动陆缘热水喷流成矿特征[J].地学前缘,2004,(1):257-268.
    [38]彭润民,翟裕生,王志刚,韩雪峰.内蒙古狼山炭窑口热水喷流沉积矿床钾质“双峰式”火山岩层的发现及其示踪意义[J].中国科学(D辑:地球科学),2004 (12):1135-1144.
    [39]肖新建,倪培.论喷流沉积(SEDEX)成矿与沉积-改造成矿之对比[J].地质找矿论丛,2000,(3):238-245.
    [40]徐文忻,汪礼明,李蘅,郭新生.中条山铜矿床同位素地球化学研究[A].地质出版社,2005.
    [41]姚凤良、孙丰月.矿床学教程[M].北京:地质出版社,2006:132-153.
    [42]杨承海,许文良,杨德彬,等.鲁西上峪辉长闪长岩的成因:年代学与地球化学证据[ J ].中国科学(D辑) ,2008,38 (1) : 44-55.
    [43]郑荣才,文华国,高红灿,柯光明,酒西盆地青西凹陷下沟组湖相喷流岩稀土元素地球化学特征[J].矿物岩石,2006,(4).41-47.
    [44]郑荣才,文华国,范铭涛,汪满福,吴国瑄,夏佩芬,酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J].岩石学报:2006:3027-3038
    [45]张东红.中条山主要铜矿床的地质特征及找矿方向[J].太原理工大学学报,2003(4):452-454.
    [46]谭少华.山西中条山铜矿区的剥离断层[J].西南工学院学报,1996(3).
    [47]谭少华.山西中条山胡-篦型铜矿床成矿地质条件与矿床成因[J].西南工学院学报,1997(2):60-63.
    [48]谭少华.山西中条山胡-篦型铜矿区地层与构造研究[J].西南工学院学报,1998(1).
    [49]陶铨.中条山地区前寒武纪地层的时代[A].地质出版社,1985.
    [50]涂生法,彭省临,杨牧.中条山胡-篦型铜矿床控矿构造浅析[J].矿产与地质,1999(2).
    [51]谭立群.中条山早元古代花岗岩类岩体地球化学特征、成因及构造意义[J].华东地质学院学报,1998(1).
    [52]覃志安,薛克勤.中条山地区地质特征及铜矿床类型[J].地质调查与研究,2003(2):108-113.
    [53]田伟,刘树文,刘超辉,余盛强,李秋根,王月然.中条山涑水杂岩中TTG系列岩石的锆石SHRIMP年代学和地球化学及其地质意义[J].自然科学进展, 2005(12):1476-1484.
    [54]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.56-129.
    [55]朱裕生,梅燕雄.成矿模式研究的几个问题[J].地球学报,1995(2):182—189.
    [56]真允庆.中条山北峪奥长花岗岩地质学及其地质年代学[J].桂林工学院学报,2001(4):309-317.
    [57]真允庆,束乾安.中条山铜矿流体碳、氧同位素示踪[J].地质调查与研究,2006(1):30-37.
    [58]真允庆.中条裂谷铜矿床的成矿规律及其找矿方向[J].桂林工学院学报,1999(1).
    [59]赵永瑞,真允庆.试论中条山胡篦型铜矿床喷流成因[J].桂林工学院学报,2006(3):310-319.
    [60]孙海田,葛朝华.中条山层控铜矿床条纹状电气石岩及容矿富硼化学沉积岩系的发现及意义[J].科学通报,1988(18):1412-1415.
    [61]孙海田,葛朝华,冀树楷.中条山地区前寒武纪地层同位素年龄及其意义[J].中国区域地质,1990.
    [62]孙海田,葛朝华.中条山式热液喷气成因铜矿床[M].科学技术出版社,1990.
    [63]孙海田,郭月敏,张宗清.中条山地区双峰态钾质火山岩系Sm-Nd同位素年龄及意义[J].科学通报,1994(14):1343-1344.
    [64]孙海田,葛朝华,冀树楷.中条山地区胡-篦型层控铜矿床角砾岩的特征及成因探讨[J].矿床地质,1989(1):19-28.
    [65]孙勇,于在平.涑水杂岩的地球化学特征[J].地球化学,1988,(4).319-325
    [66]乔秀夫,张德全,王雪英,夏明仙,晋南西阳河群同位素年代学研究及其地质意义[J].地质学报,1985,(3).258-269.
    [67]宋文法.篦子沟铜矿床的成矿地质条件及找矿方向[J].有色金属设计,2006 (1):11-14.
    [68]施振东,李立群.中条山胡篦型铜矿床中钴黄铁矿的矿物特征及其找矿意义[J].有色矿山,2000(5):1-5.
    [69]王春增.山西中条山北峪花岗岩体的构造解析及成因[J].桂林冶金地质学院学报,1991(1):57-65.
    [70]王春增.中条山胡家峪-上玉坡背斜核部杂岩的构造变形与成因演化[J].地球科学,1989(S1):16-32.
    [71]王春增.山西中条山北段变基性火成岩原岩类型及演化特征[J].桂林冶金地质学院学报,1990(2):129-139.
    [72]王春增.中条山胡家峪-上玉坡背斜核部“绛县群变酸性火山岩”的新认识[J].中国区域地质,1991(2):176-179+181.
    [73]魏东岩,幸石川,梁新.试论中条山胡篦型铜矿床之成因[J].河北地质学院学报,1984(1):30-41.
    [74]魏俊浩,王学平.中条山地区铜矿系统勘查模型[J].矿产与地质,1996 (1).
    [75]薛克勤.中条裂谷构造与成矿作用研究[D].中国地质大学(北京),2006.
    [76]薛克勤,邓军,商培林,赵月凤.中条山铜成矿带地球化学特征及成矿预测[J].物探与化探,2005 (6):481-486.
    [77]叶松,朱勤文,钟增球,叶德隆,孔东军.山西省中条山铜矿田电气石与电气石岩的研究[J].矿石矿物学杂志,1997(2).
    [78]叶德隆,朱勤文.中条山铜矿研究新进展[J].地学前缘,1994(4).
    [79]颜文,李朝阳.热水喷流沉积成矿与地学思维[J].地球科学进展,1993,(2):40-46.
    [80]赵风清,唐敏.晋南中条山北峪奥长花岗岩的岩石地球化学[J].华北地质矿产杂志,1994(3).
    [81]赵风清.山西中条山地区北峪奥长花岗岩的同位素年龄和同位素地球化学特征[J].前寒武纪研究进展,1997(1):44-50.
    [82]赵凤清,李惠民,左义成,薛克勤.晋南中条山古元古代花岗岩的锆石U-Pb年龄[J].地质通报,2006(4):442-447.
    [83]《中条山铜矿地质》编写组.中条山铜矿地质[M].地质出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700