用户名: 密码: 验证码:
添加CeO_2对ZnFe_2O_4/ASC脱除中高温煤气中H_2S的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济社会的进步与发展,人们已经意识到环境污染的严重性,环境保护工作成为整个社会的首要任务。煤气应用的发展与普及给日趋成熟的脱硫剂研发产业提出了更高要求,必须解决目前脱硫剂存在的各种不足,开发出工艺适用性强的新型脱硫剂产品。
     提高脱硫剂性能,首先必须对脱硫剂的脱硫机理、脱硫工艺影响因素进行充分的研究。铁酸锌是目前新一代高温煤气脱硫剂,它同时具备了氧化锌的高脱硫精度和氧化铁的高硫容和反应活性,且具有含阳离子空位的尖晶石结构,更易于H_2S与其反应。
     氧化由于其自身的变价储放氧和良好的分散特性,被视为二代新型脱硫剂应用于煤气脱硫中。
     本论文主要考察了氧化助剂和载体活化半焦的加入对铁酸锌脱硫剂的脱硫效率、硫容和孔结构特性的影响;对复合型脱硫剂进行了硫化和再生性能的研究;通过XRD、BET、XPS和SEM等测试手段,对样品进行了物性表征。由此得出如下结论:
     1.实验证明,欲使用超声波辅助共沉淀法制备的、添加氧化助剂的、炭基铁酸锌脱硫剂是可行的。通过对所得前驱体颗粒进行粒度测试,得出最佳制备条件为:0.5mol/L的Fe(NO_3)_3、Zn(NO_3)_2和Ce(NO_3)_3的混合溶液,在50℃水浴、超声波作用1h,选用氨水进行沉淀反应,之后在烘箱中干燥,在700℃下焙烧2小时。
     2.脱硫剂活性组分粉末与载体半焦的混合物的焙烧温度和成型脱硫剂前驱体的焙烧温度对铁酸锌、氧化晶粒的大小以及脱硫性能有很大影响。前者温度在700℃,后者温度在500℃时,脱硫剂具有较高的脱硫活性。
     3.助剂在脱硫剂中主要起到造孔、分散活性组分、增大金属氧化物活性和增强机械强度的作用。适当的添加氧化,有利于脱硫剂晶粒减小、氧化物分散性增加、延长脱硫剂穿透时间。比较未添加氧化的脱硫剂和添加不同质量百分数4.6%、8.2%、11.2%(对应摩尔比4:4:1,4:4:2,4:4:3)氧化的脱硫剂,虽然氧化本身有助于脱硫活性的提高,但添加氧化量不是越多越好,添加量为4.6%的脱硫剂表现出较高的脱硫活性。
     4.活性半焦具有高的比表面积、发达的微孔结构和良好的低温催化氧化活性等特点,作为载体,可以对活性组分起到一定的分散作用。适当的负载比例,可以有效防止活性组分的烧结,有助于提高脱硫剂的脱硫活性。通过比较8:10、10:10、12:10三种负载比例脱硫剂的硫化性能,认为负载比8:10为最佳比例。
     5.活性组分是脱硫剂的主要组成部分。活性组分的含量不是越高越好,它与脱硫剂的机械强度有一定的关系,而机械强度则直接关系到脱硫剂的重复使用。本实验选择了四个不同的活性组分含量10%、20%、25%和30%。随着含量的增加,脱硫剂穿透时间和一次硫容都明显增加,但是机械强度却有所下降。综合考虑各物性因素,选择活性组分含量为25%的脱硫剂为重点再生研究对象。
     6.本实验中由于加入了一定量的氧化,以期找到一个在保证铁酸锌硫化活性的基础上能够提高氧化转化率的适宜温区或温度。本实验选择320℃-520℃的中高温区考察该脱硫剂活性,结果表明在370℃-470℃范围内,脱硫剂活性较高;之后通过与脱硫精度综合考虑,选择最佳硫化温度为450℃。该复合型脱硫剂可以成功的进行中高温煤气脱硫。
     7.再生实验部分选择再生条件:再生温度650℃,再生气氛为H_2O-13%,O_2-2%,H_2O/O_2=6.5,其余为N_2补充,空速为2000h~(-1)。在相同条件下分别对30%、25%、20%的脱硫剂进行再生,其中只有含量为25%的脱硫剂表现出较好的再生性能。
     8.对活性组分含量为25%的脱硫剂连续进行了三次硫化—再生循环实验,二次硫容比一次硫容增加了2.52%,而第三次硫容则急剧减少,仅为一次硫容的36.87%。三次硫化时间由长到短为:1st>2nd>3rd;三次再生时间由长到短为:2nd>1st>3rd。
     最后,通过实验过程中的思考与分析,提出对今后该课题研究工作的建议。
In recent years, with the development of economic and society, people have realized the seriousness of environmental pollution, thus environmental protection work has been a primary task of the whole society. Application development and popularization of coal gas put forward a higher requirement for desulfurizer industry which is becoming mature, we must address the current various existence shortage of the desulfurizer to develop a new process applicability desulfurizer products.
     Cerium oxide has been regarded as a new second-generation desulfurizer because of its variable price of oxygen storage and good dispersion characteristics.
     The purpose of this thesis is try to investigate the effects of the doping of cerium oxide and supports of semi-coke for the desulfurization efficiency, sulfur capacity and pore structure characteristics through the operation of desulfurization and regeneration. And at present time, the next research must be aimed at improving the properties (physical and chemical) of the desulfurizer to enlarge their application limit. Zinc ferrite sorbents are considered to be the novel sorbents, which maintains the high desulfurization efficiency of zinc oxide and the high sulfur capacity and reactivity of iron oxide. The structure of zinc ferrite spinel possesses positive ion-spaces that is favorable to reacting with hydrogen sulfide. Characterization of desulfurizer was carried out by using powder X-ray diffraction, BET methods, X-ray photoelectron spectroscopy and mechanical strength.
     1. Experiments showed that the desulfurizer which obtained by adding cerium oxide into the carbon-based zinc iron under ultrasonic wave-assisted was feasible. According to the test of particles size of precursor, the optimum preparation conditions were as follows: the concentration of mixed solution of Zn(NO_3)_2,Fe(NO_3)_3, and Ce(NO_3)_3 was 0.5mol/L, the temperature of water bath was 50℃, the time of ultrasonic action was 1h, ammonia was used to precipitation, then dried in the oven, calcined at 700℃for 2 hours.
     2. The calcination temperature of both active components powder mixed with activated carbon and precursors of desulfurizer had great influence on the grain size of iron zinc, cerium oxide and desulfurization performance. The desulfurizer had the higher desulfurization activity when the former temperature was 700℃, the latter temperature was 500℃.
     3. Promoter acted as pore-forming, dispersing the active component, increasing the activity of metal oxides and enhance the role of mechanical strength in the desulfurizer. The appropriate addition of cerium oxide would help to reduce the grain size of sorbent, increase the dispersion of oxide, and extend the breakthrough time. Compared with the desulfurizers with different adding amount (0%,4.6%, 8.2%, 11.2%)of cerium oxide, the desulfurizer with 4.6% cerium oxide showed higher desulfurization activity while cerium oxide itself owned desulfurization activity, the large amount of cerium oxide addition was not possible.
     4. Activated carbon could be used as a carrier for its high surface area and well-developed porous structure. The appropriate mass ratio of activated components to activated carbon could effectively prevent sintering, to improve the desulfurization activity of desulfurizer. Compared with different mass ratio of 8:10, 10:10 and 12:10, the best ratio was 8:10.
     5. Active component was a major component of sorbent. The content of active component was not as high as possible, it had a certain relationship with mechanical strength which was directly related to the desulfurizer of the re-use. In this study, four content of active component 10%, 20%, 25% and 30% was selected. With the increase of concentration, the breakthrough time and sulfur capacity were significantly increased, but the mechanical strength had declined somewhat. Through the comprehensive consideration, the active component content of 25% was selected for the regeneration of the study focused.
     6. Due to adding a certain amount of cerium dioxide into the desulfurizer, one purpose of this study is to find out the suitable temperature or temperature zone when the conversion of cerium dioxide could be enhanced on the basis of ensuring the activity of zinc ferrite. In this study, the temperature range of 320℃-520℃was selected to study the activity of desulfurizer, the results show that during the range of 370℃-470℃, the desulfurizers could display the higher activity ; according to the desulfurization accuracy with a comprehensive consideration, the best temperature is 450℃. The compound desulfurizer could be successfully used in medium and high temperature coal gas desulfurization.
     7. In this study, the selected regeneration conditions are: the temperature is 650℃, the atmosphere is H_2O-13%, O_2-2%, H2O/O2=6.5, N_2 supplement, space velocity is 2000h~(-1). Active components of 30%, 25% and 20% of the desulfurizer were regenerated under the same conditions, only the content of 25% showed better regeneration performance.
     8. For the active component content of 25% of the desulfurizer, three consecutive desulfurization—regeneration recycling experiments were operated, the second sulfur capacity increased 2.52% than the first sulfur capacity, while the third sulfur capacity was drastically reduced, just was 36.87% of the first sulfur capacity. Three times of desulfurization time from long to short was: 1st>2nd>3rd; three regeneration time from long to short was: 2nd>1st> 3rd.
     Finally, through consideration and analysis in the process of experiments, several points on the subject of future research had been proposed.
引文
[1]陈鹏.中国煤炭性质、分类和利用[M].2版.北京:化学工业出版社,2006,1-22
    [2]汪寿建.21世纪洁净煤气化技术发展综述[J].化肥设计.2004,42(5),35-41
    [3]GB 14554—93,恶臭污染物排放标准
    [4]王睿,石冈,魏伟胜,等.工业气体中硫化氢的脱除方法-发展现状与展望[J].化工与综合利用.1999,19(3):84-86
    [5]熊一权.洁净煤技术的应用领域[J].节能与环保.2006,02,38-40
    [6]魏力.世界煤化工发展趋势.辽宁化工[J],2007,01,32-33
    [7]王德海,常丽萍,谢巍,等.高温煤气脱硫的动力学研究现状及进展[J].煤化工, 2009,04,20-25.
    [8]Christoforou S C, Efthimiadis E A, Vasalos Iacovos. Sulfidation of Mixed Metal Oxides in a Fluidized-Bed Reactor[J].Ind Eng Chem Res,1995,34: 83
    [9]郭汉贤.应用化工动力学[M].北京:化学工业出版社.2003.407-518
    [10]朱永军.高温煤气脱硫剂金属氧化物间的相互作用[D].太原理工大学,2008
    [11]侯鹏飞.氧化铁基高温煤气脱硫剂再生研究[D].太原理工大学,2008
    [12]刘小群,江宏富,姚文锐.硫化氢脱除技术研究进展[J].安徽化工,2004,05,33-37
    [13]Grindley T, Steinfeld G. Development and Testing of Regenerable Hot Coal Gas Desulfurizatioon Sorbents[C]. DOE/MC/16545-1125,1981.
    [14]Grindley T. Steinfeld G.Zinc Ferrite Hydrogen Sulfide Absorbent.In Third annual Contaminant Control in Hot Coal-derived Gas Streams Contractors’Meeting Proceedings[C].Science Applications, Inc.DOE/METC/184-6.NTIS/DE84000216. December, 1983:145-172
    [15]Jha M C, kepworth M T, Baltich L K. Enhanced Sorbent Durability for Hot Coal Gas Desulfurization[C]. Final Report, DOE/MC/21168-2023(DE86006625),1986
    [16]R. Gupta, S.K. Gangwal, Development of zinc ferrite sorbents for desulfurization of hot coal gas in a fluid-bed[J]. Reactor, Energy Fuels,1992,6:21–27
    [17]Mark C, Woods, Santosh K G. Kinetics of the Reac-tions of a Zinc Ferrite Sorbent in High-temperature Coal Gas Desulfurization [J]. Ind Eng Chem Res, 1991, 30(1): 100-107.
    [18]朴玲钰,李春虎,李彦旭.ZnFe2O4高温煤气脱硫剂的还原与硫化[J].高校化学工程报.2001,15(6): 546-551
    [19]Pineda M, Fierro JLG, Palacios JM, Cilleuelo C, Ibarra JV. J Mater Sci..1995,30:6171
    [20]Pineda M, Palacios JM, Garcia E, Cilleuelo C, Ibarra JV. Fuel 1997,76:567
    [21]Ahmed MA, Alonso L, Palacios JM, Cilleruelo C, Abanades JC. Solid State Ionics. 2000,138:51
    [22]朴玲玉.铁酸锌高温煤气脱硫剂的制备和表征[D].太原理工大学,1999
    [23]许鸿雁.中低温下(350-450℃)铁酸锌脱硫剂的制备、表征与活性评价[D].太原理工大学.2002
    [24]K. Tka′cˇova′,V.Sˇepela′k,N. Sˇtevulova,V. V. Boldyrev. Structure–Reactivity Study of Mechanically Activated Zinc Ferrite[J].JOURNAL OF SOLID STATE CHEMISTRY 123, 1996, 100–108
    [25]Na-oki Ikenaga,Norihito Chiyoda,Hiroaki Matsushima,Toshimitsu Suzuki.Preparation of activated carbon-supported ferrite for absorbent of hydrogen sulfide at a low temperature[J].Fuel, 2002,81:1569-1576
    [26] Gupta R and Gangwal S K. Enhanced Durability of Desulfurization Sorbent for Fluidized Bed Application[C].Topical Report to DOE/METC,Report,1991,1002090:2506-3001
    [27]许鸿雁,李春虎,梁美生,等.铁酸锌高温煤气脱硫剂的活性评价及表征[J].化工环保,2004,03,165-168
    [28]A Silabanand DP Harrison,Chem. Eng.Comm. 1991,107,55-57
    [29]刘早春.热煤气脱硫一铁酸锌脱硫剂的优化[J].华东理工大学学报,1994,8(1):25-28
    [30]KWONK C, CROWEE R. Reactivity of metal oxide sorbents for rem oval of H2S[R]. 1996,DOE/MC/31206-97/C0747
    [31]许鸿雁,梁美生,李春虎,等.黏结剂对铁酸锌脱硫剂在高温煤气中脱硫性能的影响[J].燃料化学学报,2005,33:12-17
    [32]M.A. Ahmed, L. Alonso , J.M. Palacios,C. Cilleruelo , J.C. Abanades. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization[J].Solid State Ionics 2000,138:51–62
    [33]Na-oki Ikenaga, Yousuku Ohgaito, Hiroaki Matsushima, Toshimitsu Suzuki. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning[J]. Fuel,2004, 83:661–669
    [34]Focht G D, Ranade P V and Harrison D P. High-Temperature Desulfurization Using Zinc Ferrite: Reduction and Sulfidation Kinetics[J].Chemical Engineering science,1988,43: 3005-3013
    [35]Sa L A, Focht G D, Ranade P V and Harrison D P. High-Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes[J].Chemical Engineering Science, 1989, 44(2): 215-224
    [36]Meisheng Liang, Hongyan Xu, Kechang Xie.Bench-Scale Testing of Zinc Ferrite Sorbent for Hot Gas Clean-up[J]. Journal of Natural Gas Chemistry ,2007,16:204–209
    [37]吴建芝.改性活性半焦脱除原料气中H2S的研究[D].中国海洋大学,2007
    [38]于芳芳,张志娟,伍健东.高温煤气脱硫剂铁酸锌的性能及再生研究[J].化学与生物工程,2008,.25:62-65
    [39]邓一英,步学朋,应幼菊.钛酸锌高温煤气脱硫剂的活性评价及表征[J].煤炭学报,2006(2):223-226
    [40]R.E. Ayala, D.W. Marsh, Characterization and long-range reactivity of zinc ferrite in high temperature desulfurization processes, Ind. Eng. Chem. Res. 1991, 30:55–60
    [41]Focht G D, Ranade P V, Harrison D P. High-temperature desulfurization using zinc ferrite: regeneration kinetics and multicycle testing[J].Chem Eng Sci, 1989, 44(12): 2919
    [42]Ayala R E, Marsh D W. Ind Eng Chem Res, 1991,30(1): 55-58
    [43]Gupta R, Gangwal S K, Jain S C. Development of zinc ferrite sorbents for desulfurization of hot coal gas in a fluid-bed[J].Energy & Fuels,1992,6(1):21
    [44]卢朝阳,沙兴中,李四生,等.高温煤气脱硫Ⅱ铁锌基脱硫剂再生工艺条件的研究[J].燃料化学学报,1997,25: 267-271
    [45]许鸿雁,梁美生,李春虎,等.铁酸锌高温煤气脱硫剂硫化再生性能的研究[J].中国机工程学报,2004,24(5),198-201
    [46]朴玲钰,李春虎,李彦旭.ZnFe2O4高温煤气脱硫剂的再生.高校化学工程学报[J].2002, 16:89-92
    [47]Pineda M, Palacios J M, Alonso L, Garcia E, Moliner R. Fuel, 2000,79(8): 885
    [48]M.C. Woods, S.K. Gangwal, K. Jothimurugesan, D.P. Harrison, Ind. Eng. Chem. Res. 1990,29:1160–1167
    [49]F. Toma′s-Alonso, J.M. Palacios Latasa. Synthesis and surface properties of zinc ferritespecies in supported sorbents for coal gas desulphurization[J]. Fuel Processing Technology 2004,86:191– 203
    [50] Bandosz TJ. Carbon 1999;37:486.
    [51]Cal MP, Strickler BW, Lizzio AA. Carbon 2000;38:1757.
    [52]Andrey B, Habibur R, Teresa J.B. Study of H2S adsorption and water regeneration of spent coconut-based activated carbon[J]. Environ. Sci. Techno1 ,2000 ,34(21):458-459
    [53]Teresa J.B.Effect of pore st ructure and surface chemist of virgin activated carbons on removal of hydrogen sulfide[J].Carbon,1999,37:483-491
    [54]赵雪娜,迟文波,池金志.负载活性炭催化氧化技术及其进展[J].城市管理与科技,2004,6 (3):111-114
    [55]吴博,黄戒介,张荣俊,等.活性炭(焦)低温吸附催化脱除H2S的基础研究[J].燃料化学学报,2009,37(3):231-234
    [56]肖永厚,王树东,袁权.浸渍活性炭脱除硫化氢研究进展[J].化工进展,2006,25(9):1025-1030
    [57]周继红,赵军广,郝彩莲.负载型Zn/活性炭脱硫剂的试验研究[J].河北工程大学学报(自然科学版),2008,4:53-55
    [58]STEI JNSM, DERK F, VERLOOP A, MARS P. Themechanism of the catalytic oxidati on of hydrogen sulfide[J].J Catal,1976,42(1):872-895
    [59]Sreeramamurthy R,Menon P G.Oxidation of H2S on activated carbon catalyst [J].J.Cat., 1975,37(2):287–296
    [60]Kaliya A N,Smith J W. Oxidation of low concentrations of hydrogen sulfide by air on a fixed activated carbon bed[J]. Can. J. of Chem. Eng.,1983,61(2):208–212.
    [61]Cariaso O C,Walker P L. Oxidation of hydrogen sulfide over microporous carbons[J]. Carbon,1975,13 (3):233–239.
    [62]Ghosh T K,Tolefson E L. Kinetics and reaction mechanism of hydrogen sulfide oxidation over activated carbon in the temperature range of 125-200℃[J]. Can. J. Chem. Eng.,1986,64(6):969–976
    [63]Steijins Matt,Mars Pieter.Catalytic oxidation of hydrogen sulfide influence of pore structure and chemical composition of various porous substances[J].Ind. Eng. Chem. Prod. Res. Dev., 1977,16(1):35–41
    [64]谭小耀,吴迪镛,袁权.浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J].化工学报,1997,48(2):237–240
    [65]Alessandra P,Alessandro T. The effect of water in the low- temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon [J].Applied Catalysis A:General,1998,173 (2):185–192
    [66]Bagreev Andrey,Menendez J Angel,Dukhno Irina,et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J].Carbon,2004,42(3):469–476
    [67]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,1994,32(5):759–769
    [68]Meeyoo Vissanu,Trimm David L. Adsorption-reaction processes for the removal of hydrogen sulfide from gas streams [J]. J. Chem. Tech. Biotech.,1997, 68 (4):411–416
    [69]Yan Rong,Chin Terence,NG Yuen Ling,et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons [J]. Environ. Sci. Technol.,2004,38 (1):316–323.
    [70]Bandosz Teresa J. Effect of pore structure and surface chemistry ofvirgin activated carbons on removal of hydrogen sulfide [J]. Carbon,1999,37(3):483–491
    [71]Adib Foad,Bagreev Andrey,Bandosz Teresa J. Effect of pH and surface chemistry on the mechanism of H2S removal by activated carbons[J]. J. Coll. & Inter. Sci.,1999,216(2):360–369
    [72] Adib Foad,Bagreev Andrey,Bandosz Teresa J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons[J]. Langmuir,2000,16(4):1980–1986
    [73]Adib Foad,Bagreev Andrey,Bandosz Teresa J. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide[J]. J. Coll. & Inter. Sci.,1999,214(2):407–415
    [74]Mikhalovsky S V,ZaiTsev Yu. P. Catalytic properties of activated carbons I. Gas-phase oxidation of hydrogen sulphide[J].Carbon,1997,35(9):1367–1374
    [75]Bagreev Andrey,Bandosz Teresa J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents[J]. Ind. Eng. Chem. Res.,2005,44(3):530–538
    [76]Nguyen Thanh Danh, Bandosz Teresa J.Activated carbons with metal containingbentonite binders as adsorbents of hydrogen sulfide[J].Carbon,2005,43(2):359–367
    [77]陆耘,陈移山,符若文,等.活性炭纤维为载体的催化剂对NO的催化还原作用(三)[J].离子交换与吸附,1994 ,10(2):119-121
    [78]符若文,杜秀英,黄爱萍.负载Pd/Cu活性炭纤维的孔结构研究[J].中山大学学报:自然科学版,2002,41(1):46-50
    [79]沈璐,杨小宁,华坚,等.不同造孔剂负载金属活性炭的制备及其脱硫性能初步研究[J].四川环境,2006,25(6):26-31
    [80]周继红,赵军广,郝彩莲,等.负载型Zn/活性炭脱硫剂的试验研究[J].河北工程大学学报:自然科学版,2008,25(4):53-55
    [81]周继红,华玉芝,史长林,等.负载型活性炭脱硫(H2S)的试验研究[J].河北建筑科技学院学报,2003,20(1):8-10
    [82]马建蓉.新型炭载氧化物低温烟气脱硫剂的研究[D].北京化工大学,2001
    [83]王艳荣.纳米氧化的资源及应用[J].广州化工, 2005,05:35-37
    [84]冯长根,樊国栋,刘霞.三效催化剂中促进剂氧化的作用研究进展[J].化工进展,2005,24(3):227–230
    [85]Stagg-williams M S,Noronha F B,Fendley G,et al.[J].J.Catal.,2000, 194(2):240–248
    [86]杨咏来,徐恒泳,李文钊. Ni/CeO2-Al2O3催化剂上CH4-CO2转化积炭性能的研究[J].高等学校化学学报,2002,23(11):2112–2116
    [87]石磊,马正飞,姚虎卿.镍系催化剂下甲醇气相低压羰基化合成乙酸初探.化工进展[J],2003,22(2):175–179
    [88]Breysse,M.etal.,J.Catal.,27,275(1972):28,54(1973)
    [89]Mendelovici,L.&Steinberg,M.,Appl.Catal,.4,237(1982)
    [90]Summers, J.C.et al.,J.Catal.,58,131(1979)
    [91]Rosynek,M.P.,Catal.Rev.-Sci.Eng.,16(1),111(1977)
    [92]卢冠忠,汪仁.氧化在非贵金属氧化物催化剂中的作用I.铜和负载型氧化物中的氧的性能[J].催化学报,1991,12(2):115-118
    [93]董相廷,洪广言,于得财.CeO2纳米粒子形成过程中Ce的价态变化[J].硅酸盐学报,1997, 125(13):75-79
    [94]王敏炜,魏文龙,罗来涛.CeO2的制备及其在催化剂载体中的应用研究进展[J].化工进展,2006,25(5):517-519
    [95]金明善,徐秀峰,翁永根,等.CeO2在Al2O3及TiO2载体上的分散[J].烟台大学学报(自然科学工程版),2003,16(1):49–53
    [96]颜志鹏,崇明本,程党国,等.纯与掺杂CeO2的氧化还原性质及其催化领域的应用[J].化学进展,2008,Z2:1037-1043
    [97]Esch F, Fabris S, Zhou L. Science,2005,309 : 752-755
    [98]Nolan M, Parker S C, Watson G W. Surf. Sci., 2005, 595:223-232
    [99]Zaki M I, Hasan M A, Al2Sagheer F A, et al . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2001, 190: 261- 267
    [100]Deberry D. W., Sladek K. J. The Canadian J. Chem. Eng., 1971, 49 (12):781- 785.
    [101]Y Zeng,S.Zhang,F.R.Groves,D.P.Harrison.HighTemperature Gas Desulfurization with Elemental Sulfur Produetion.Chemical.Engineering Science, 1990, 54,3007-3017.
    [102]Y.Zeng,5.Kaytakoglu,D.P.Harrison.(2000).Reduced cerium Oxide as an efficient and durable high temperature desulfurization sorbent. Chemieal.EngineeringSeienee,554893-4900
    [103]Meng V V ,Kay D A R. Gaseous desulfurization using rare earth oxide[C]/Vincinzini P. High technology ceramics ,Amsterdam: Elsevier ,1987:2247 - 2258
    [104] Kay D A R ,Wilson W G,Jalan V. High temperature thermodynamics and applications of rare earth compounds containing oxygen and sulfur in fuel gas desulfurization and SO2 and NOx removal [J ] . Journal of Alloys and Compounds ,1993 ,192 :11-16
    [105]张世超.稀土氧化物与二氧化硫反应的热力学研究[J].稀土,1997,03:20-24
    [106]张世超,崔怡红,赵连权.二氧化硫化反应动力学[J].化工冶金,1997,02:28-33
    [107]陈新民.火法冶金过程物理化学[M].北京:冶金出版社,1985
    [108]J.塞克利著.气固反应[M].胡道和译.北京:科学技术出版社,1985
    [109]李庆扬.数值分析[M].武汉:华中工学院出版社,1982
    [110]陈志刚,陈建清,陈杨,等.二氧化前驱体煅烧过程中的遗传性研究[J].江苏大学学报,2004,25(6):536-540
    [111]高春珍,李春虎,岳丽丽,等.氧化高温煤气脱硫剂的还原与硫化[J].煤炭转化,2004, 27(1):24-27
    [112]Riess I,Ricken M,Noelting J.J Solid State Chem,1985,57(314): 557-561
    [113]高春珍,梁美生,樊惠玲,李春虎.预还原对氧化高温煤气脱硫剂的影响[J].太原理工大学学报,2006,37(6):607-610
    [114]张一帆,郭曙强,鲍国杭,等.氧化脱硫剂的高温煤气脱硫研究[J].煤炭转化,2008,31(2):20-24
    [115]鲍国航.中高温煤气脱硫的实验研究[D].上海大学,2009
    [116]高春珍.氧化高温煤气脱硫剂的制备与活性评价[D].太原理工大学,2004
    [117]Li Z,Flytzani, StephanopoulosM. Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization [J]. Ind Eng Chem Res,1997,36:187-191
    [118]Union Oil Company of California. Desulfurization of fluid materials: US,4507149[P].1985
    [119]Kay D A R ,Wilson W G. Regeneration of ceriumoxide from sulfur containing cerium compounds formed in desulfurization of sulfur2containing fluids with cerium oxide :US ,4826664[ P].1989,05
    [120]李燕红,张征,郭宪吉,等.对氧化铁还原性能的影响[J].郑州大学学报(自然科学版).1998, 30(2): 78-80
    [121]卢冠忠,汪仁.氧化在非贵金属氧化物催化剂中的作用Ⅵ. Cu-Fe-Ce-O催化剂的结构与热稳定性[J].中国稀土学报,1999,17(3):213-218
    [122]杨成,任杰,孙予罕.CeO2和La2O3改性Pd/γ-Al2O3甲醇低温分解催化剂的研究Ⅰ.CeO2改性Pd/γ-Al2O3催化剂的结构和性能[J].催化学报,2001,22(3):339-342
    [123]罗孟飞,边平凤,郑小明.载体对负载PdO催化剂的CO氧化活性的影响[J].应用化学,1998,15(4):113–114
    [124]钟依均,陈平,周碧,等.CuO/CeO2和CuO/Al2O3催化剂的催化性能[J].应用化学,1997,14(1):49–52
    [125]蒋晓原,丁光辉,刘淇,等.CuO在CeO2和γ-Al2O3上的表面性质及对NO+CO反应性能的研究[J].浙江大学学报(理学版),2003,30|(3):289–295
    [126]Wang X,Gorte R J,Wagner J P. [J]. J. Catal.,2002, 212:225–230.
    [127]立本英机,安部郁夫.活性炭的应用技术[M].高尚愚,译.南京:东南大学出版社,2002:12
    [128]Tamon H, Okazaki M.Influence of Acidic surface oxides of activated carbon on gas adsorption characteristics[J].Carbon, 1996, 34(6):741-746
    [129]Menendez J A,Philips J, Xia B et al.On the modification of chemical surface propertiesof activated carbon:In the search of carbon with stable basic properties[J].Langmuir,1996,12:4404-4410
    [130]Jagiello J, Bandosz T J, Schwarz J A.Inverse gas chromatographic study of activated carbons: The efedt if controlled oxidation on microstructure and surface chemical functionality. J Colloid&Interface Science, 1992, 151(2):433-445
    [131]TAMAI H , SHIRA KI K, SHIONO T, et al. Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine [J] .Journal of Colloid and Interface Science, 2006, 295 :299-230
    [132]张双全,钱中秋,王祖讷.催化-氧化理论及其在活性炭制备中的应用[J].中国矿业大学学报, 2000,29(2):178-182
    [133]刘洋,张香兰,王启宝,等.煤半焦催化活化制备多孔活性炭[J].煤炭加工与综合利用,2005,16:32-35
    [134]邢德山,阎维平.工业半焦水蒸气活化孔隙结构的变迁[J].中国电机工程学报.2008, 28(2):14-19
    [135]史磊.半焦的活化及脱灰研究[D].大连理工大学,2008
    [136]黄正宏,康飞宇,郝吉明.KOH活化与CO2活化的ACF的孔结构[J].碳素,2005,121(1):23-26
    [137]张会平,叶李艺,杨立春.磷酸活化法活性炭的吸附性能和孔结构特性[J].化工进展,2004,23(5):524-528
    [138]Lizzio.A.A,Debarr.J.A.Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char[J].Fuel,1996,75:1515-1522
    [139]郑少华.超声波共沉淀法制备超细粉[J].中国粉体技术, 2004,03,17-20
    [140]李春喜,宋红艳,王子镐.超声波在化工中的应用与研究进展[J].石油学报(石油加工), 2001, 03,86-94
    [141]闪俊杰,杜振雷,李青,等.超声波在化学工业中的应用[J].河北工业科技, 2009,02,127-130
    [142]Richards WT, Loomis AL.J.Am.Chem.Soc.,1927,49,3086.
    [143]于凤文,徐之超,计建炳.超声波在化学工业中的应用[J].化工时刊, 2000(7):1-4
    [144]李春喜,宋红艳,王子镐.超声波在化工中的应用与研究进展[J].石油学报:石油加工,2001,17 (3):86-94
    [145]薛娟琴,吴川眉.超声波对溶液性质的影响[J].金属世界,2008(1):25-28
    [146] Yaminsky V V , Yam inskaya K B, Per tsov A V, et al . Nucleation and coagulation effects of ultrasound during precipitation in solution [J].Kolloidnyi Zhurnal, 1991,53(1):100-104
    [147]王伟宁.超声波在碱式氯化镁结晶中的应用研究[J].无机盐工业,1990,3: 22-23
    [148]Qiu T, Zhang Z, Li Y. The treatment of saturated sugar solution with a sonic field [J].Int Sugar J,1994,96:523-526
    [149] Hagenson L C, Do raiswamy L K. Comparison of the effects of ultrasound and mechanical agitation on a reacting solid—liquid system[J].Chem Eng Sci,1998,53(1):131-148
    [150] Gatumel C, Espitalier F, Schwartzentruber J, et al. Precipitation of bar ium sulfate: Inf luence of ultrasound [J] .Chem Techn &M etallurgy, 1997, 244: 96-98
    [151]Li B, Xie Y, Huang J, et al. Sonochem ical synthesis of silver, copper and lead selenides[J]. Ultrasonics Sonochem,1999,6(4):217-220
    [152]Perez M aqueda L A, M at ijevic E. P reparation and characterization of nanosized zirconium (hydrous) oxide particles[J].J M at Res,1997,12(12): 3286- 3292
    [153]Oshima R, Yamamo to T A , M izuko sh i Y, et al . Elect ron m icro scopy of noble metal alloy nanopar t icles p repared by sonochem icalmethods[J].N ano st ructuredM ater ials, 1999, 12 (1): 111- 114
    [154]Honda.Michasu. Jpn.Kokai Tokkyo Koho Jp.0300,135.
    [155]霍超,于凤文,范青明,等.超声处理对活性炭表面形态及负载催化剂活性的影响[J].化学反应工程与工艺,2007,23(3):264-266
    [1]典福,张静伟,王阳,等.半焦在内循环流化床中燃烧特性的研究[C].中国工程热物理学会第十一届学术会议论文集—燃烧学,北京,2005
    [2]周宏仓,金保升,仲兆平,等.三种煤的部分气化生成多环芳烃的试验研究[J].中国电机工程学报,2005,25(2):156-160
    [3]沈芳,上官炬,李春虎,等.改性半焦烟气脱硫的研究[J].太原理工大学学报,2003,34(3):279-281
    [4]张芸,兰新哲,宋永辉.活性半焦(兰炭)烟气脱硫剂的研究进展[J].洁净煤技术, 2008,01,65-69
    [5]郭瑞莉,于英民,李春虎.半焦脱硫剂脱除烟气中SO2[J].环境化学,2009,03,457-458
    [6]史磊.半焦活化及脱灰研究[D].大连理工大学,2009
    [7]刘守军,刘振宇,牛宏贤,等.新型低温CuO/AC脱硫剂制备及表征-载铜量对脱硫活性的影响[J].燃料化学学报,1999,S1,187-192
    [8]张丽丹.改性活性炭对苯废气吸附性能的研究[J].新型炭材料,2002,12(2):41-45
    [9]煤的工业分析方法(GBT212-2001)
    [10]煤的元素分析方法(GB476-2001)
    [11]王睿.半焦负载铁酸锌高温煤气脱硫剂的制备及其活性评价[D].太原理工大学,2009
    [12]P.Vinke,M.VAN DER Eijk,M Verbree,A.F.Voskamp and H.VAN Bekkum,Modification of the surface of a gas-activated carbon and a chemically activated carbon with nitric acid,hypochlorite and ammonia[J].Carbon,1994,32(4):675-686
    [13]Joong S. Noh and James A.Schwarz, Effect of HNO3 treatment of surface acidity ofactivated carbons[J]. Carbon,1990,28(5),675-682
    [14]M.Mercedes Maroto-Valer,Ion Dranca, Tudor Lupascu and Raisa Natas, Effect of adsorbate polarity on thermode sorption profiles from oxidized and metal-impregnated activated carbons[J].Carbon,2004,42(12-13):2655-2659
    [15]H.Tamon and M.Okazaki, Influence of acidic surface of oxodies of activated carbon on gas adsorption characteristic[J].Carbon 1996,34(6):741-746
    [16]G Rychlicki,A P Terzyk and W Majchrzycki. The effect of commercial carbon de-ashing on its thermal stability and porosity[J].Journal of Chemical Technology Biotachnology,1999,74,329-336
    [17]A.Linares-Solano,I.Martin-Gullon,C.Salinas-MartinezdeleceaandB.Serrano-Talavera,Activated carbons from bituminous[J]. Coal: effect of mineral matter content, Fuel, 2000,79,635-643
    [18]C.Moreno-Castilla,F.Carrasco-Marin,F.J.Mal donado-Hodar and J.Rivera-Utrilla, Effects of ono-oxidant and oxidant acid treatments on the surface properties of an activated carbon with vary low ash content[J] .Carbon,1998,36(1-2):145-151
    [19]王同华,崔之栋,郑明东.用HF和H2SiF6脱灰制高精煤[J].燃料化学学报,1992,20(3):65-70
    [20] Lloyd R,Turner J.Au Pat.09 669,1979
    [21] Lloyd R,Turner J.Wo Pat.04 917,1986
    [22] Gan H. Nature of Porosity in American Coal.Fuel,1972,51:272
    [23]胡世菊,谢巍,常丽萍,宋辉,余江龙.铁高温煤气脱硫剂及其载体特性的表征[J].辽宁工程技术大学学报(自然科学版),2008,04,620-622
    [24]Toda Y. Micropore strueture of coal. Fuel,1971,50:187
    [25]谢巍.以粉煤灰为载体的铁高温煤气脱硫剂脱硫行为的研究[D].太原理工大学,2007
    [26]霍超,于凤文,范青明,等.超声处理对活性炭表面形态及负载催化剂活性的影响[J].化学反应工程与工艺,2007,23(3)264-266
    [27]罗雪岭,张双全,陈培,等.超声波和添加剂对活性炭中孔及吸附性能的影响[J].中国矿业大学学报,2009,38(3):406-409
    [28]黄瀛华,沙兴中,程秀秀,等.煤及煤焦孔隙结构的研究[J].华东化工学院学报,1984,02:147-152
    [29]黄瀛华,沙兴中,程秀秀,等.煤及煤焦孔隙结构的研究—Ⅱ.煤及煤焦孔隙结构特徵与气化反应性的关系[J].华东化工学院学报,1986,03:325-332
    [30]SHANGGUAN Ju,LI Chun-hu,MIAO Mao-qian,YANG Zhi.Surface characterization and SO2 removal activity of activated semi-coke with heat treatment[J]. NEW CARBON MATERIALS,2008,23(1):221-225
    [31]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30
    [32]Stagg-williams M S,Noronha F B,Fendley G,et al.[J].J.Catal.,2000,194(2):240–248
    [33]柯明,刘保华,范志明,等.活性炭脱硫剂对催化裂化汽油的预精制[J].炼油设计,2002,07:43-46
    [34]张芸,兰新哲,宋永辉.活性半焦(兰炭)烟气脱硫剂的研究进展[J].2008,01:45-48
    [35]申文忠,郑经堂.水蒸汽二次活化对活性炭中孔结构的影响[J].炭素技术,2002,04:5-9
    [36]肖永厚,王树东,袁权.浸渍活性炭脱除硫化氢研究进展[J].化工进展,2006,09:1025-1030
    [37]Sreeramamurthy R,Menon P G. Oxidation of H2S on activated carbon catalyst[J].J.Cat.,1975,37(2):287-296
    [38] Steijins Matt,Mars Pieter. Catalytic oxidation of hydrogen sulfide. influence of pore structure and chemical composition of various porous substances[J].Ind.Eng.Chem.Prod.Res. Dev.,1977,16(1) 35–41
    [39] Alessandra P,Alessandro T.The effect of water in the low- temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon[J].Applied Catalysis A :General,1998,173(2):185-192
    [40] Bagreev Andrey, Menendez J Angel,Dukhno Irina,et al.Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J].Carbon,2004,42(3):469–476
    [41]谭小耀,吴迪镛,袁权.浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J].化工学报,1997,48(2):237–240
    [42]刘代俊.分形理论在化学工程中的应用[M].北京:化学工业出版社,2006
    [1]鲍国杭.中高温煤气脱硫的实验研究[D].上海大学,2007
    [2]张亚文,李昂,严铮洸,等.灼烧时间对稀土氧化物粒度、比表面积和形貌的影响(Ⅲ)[J].中国稀土学报,2002,20(2):170-172
    [3]朱永军.高温煤气脱硫剂金属氧化物间的相互作用[D].太原理工大学,2008
    [1]张亚文,严铮洸,廖春生,等.灼烧温度对单一稀土氧化物粒度、比表面积和形貌的影响[J].中国稀土学报,2001,19(4):378-380
    [2]张亚文,李昂,严铮洸,等.灼烧时间对稀土氧化物粒度、比表面积和形貌的影响(Ⅲ)[J].中国稀土学报,2002,20(2):170-172
    [3]Simons GA, G arman A R. Small pore closure and the deactivation of the limestone sul fation reaction[J].AIChEJ.1986(32):1491-1499
    [4]Wang Wuyin,Bjerle I. Modeling of high-temperaturedesul furization by Ca-based sorbents [J].Chemical Engineering Science.1997, 53 (11):1973-1989
    [5]刘现卓,赵长遂,钱晓东,等.孔隙结构对石灰石脱硫性能的影响[J].热能动力工程,2004,19(1):77-80
    [6] M.A. Ahmed, L. Alonso , J.M. Palacios , C. Cilleruelo , J.C. Abanades. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization[J].Solid State Ionics 138,2000,51–62
    [7]Hisashi,Tada,Masahiro Saruta,et aL.Carbon fiber for composite material[J].Carbon, Volume 28, Issue 1, 1990, Page III
    [8]李春虎.中高温煤气抗粉化的铁酸锌脱硫剂的制备.专利,2008
    [9]冯长根,樊国栋,刘霞.三效催化剂中促进剂氧化的作用研究进展[J].化工进展,2005,24(3):227–230
    [10] Stagg-williams M S,Noronha F B,Fendley G,et al.[J].J.Catal.,2000, 194(2):240–248
    [11]杨咏来,徐恒泳,李文钊.Ni/CeO2-Al2O3催化剂上CH4-CO2转化积炭性能的研究[J].高等学校化学学报,2002,23(11):2112–2116
    [12]石磊,马正飞,姚虎卿.镍系催化剂下甲醇气相低压羰基化合成乙酸初探[J].化工进展,2003,22(2):175–179
    [13] Breysse,M.etal.,J.Catal.,27,275(1972):28,54(1973)
    [14] Mendelovici,L.&Steinberg,M.,Appl.Catal,.4,237(1982)
    [15] Summers, J.C.et al.,J.Catal.,58,131(1979)
    [16] Rosynek,M.P.,Catal.Rev.-Sci.Eng.,16(1),111(1977)
    [17]Simons GA,G arman A R. Small pore closure and the deactivation of the limestone sul fation reaction[J].AIChEJ.1986(32):1491-1499
    [18]赵敬德,刘妮.多孔脱硫剂孔结构的特性[J].动力工程,2007.01:122-125
    [19]唐建春,郭曙强,潘晋波.焙烧温度对高温Mn-Fe-Ca脱硫剂脱硫性能的影响[J].煤炭转化,2009,02:45-49
    [20]朱永军.高温煤气脱硫剂金属氧化物间的相互作用[D].太原理工大学,2008
    [21]高春珍,梁美生,樊惠玲,等.预还原对氧化高温煤气脱硫剂的影响[J].太原理工大学学报,2006,06:607-610
    [22]Li Fen,Yan Bo,Zhang Jie,et Al.Study on Desulfurization Efficiency and Products of Ce-Doped Nanosized ZnO Desulfurizer at Ambient Temperature[J].JOURNAL OF RARE EARTHS,25(2007),306-310
    [23]李芬,闫波,邵纯红,等。掺杂纳米ZnO结构与室温脱硫性能的相关性研究[J].无机化学学报,2006,22,10-13
    [24]赵海,张德祥,王芳芳,等.添加氧化对铁锰复合氧化物脱除羰基硫的影响[J].燃料化学学报,2008,36, 2
    [25]陈萦.含铁化合物的Fe2p和Fe3s电子能谱研究刘芬[J].分析测试技术与仪器,2001,7(3):235-240
    [26]卢冠忠,汪仁.氧化在非贵金属氧化物催化剂中的作用—Ⅳ.在负载型Cu-Mn-Ce-O催化剂上甲苯的催化燃烧[J].催化学报,1992,13(02):466-470
    [27]F.Le Nomrnad,J.EI FalLah et al.Photoemission on 3d core levels of Cerium:an experimental and theoretical investigation of the reduction of Cerium dioxide[J].Solid State Comm.,1989,71(11):885-889
    [28]ChaiChunlin,Yang Shaoyan,Liu Zhikai et al.The PL‘violet shift’of Cerium dioxide on silicon[J].Chinese Science Bulletin,2001,46(24):2046—2048
    [29]Astushi Fujimori.Correlation effects in the electronic structure and Photoemission spectra of mixed-valence Cerium compounds[J].Phys.Rev.B,1983,28(8):4489-4499
    [30]罗丽珠.金属Ce表面氧化反应XPS研究[D].北京,中国工程物理研究院,2005
    [31]Patrice Charvin,Stéphane Abanades,Eric Beche,et aL.Hydrogen production from mixed cerium oxides via three-step water-splitting cycles[J].Solid State Ionics,2009, 180(14-16):1003-1010
    [32]F. Deganello, L.F. Liotta, A. Longo, et aL.Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates[J].Journal of Solid State Chemistry, 2006, 179(11): 3406-3419
    [33]张金昌,吴迪铺.新型Mn-Fe/Al203高温脱除H2S的实验研究(Ⅱ)[J].燃料化学学报,1999,27(6):505-509
    [34]Kay D A R ,Wilson W G. Regeneration of ceriumoxide from sulfur containing cerium compounds formed in desulfurization of sulfur2containing fluids with cerium oxide :US ,4826664[P].1989,05-02.
    [35]郭益群,苏运来,周灵萍.无中变催化剂的XRD研究[J].郑州大学学报(自然科学版),1996,28(3):89-91
    [36]Rodriguez JoséA, J irsak Tomas, Chaturvedi Sanjay .The interaction of H2S and S2 with Cs and Cs/ZnO surfaces photoemission and molecular orbital studies[J].Sur face Science, 1998, 407: 171-188
    [37]Wu Qifei,Yakshinskiy Boris V, Madey Theodore E.Adsorption and decomposition of H2S on UO2 (001)[J]. Surface Science,2003,523:1-11
    [38]王艳荣.纳米氧化的资源及应用[J].广州化工,2005,05:35-37
    [39]刘守军,刘振宇,朱珍平.高活性炭载金属脱硫剂的制备与筛选[J].煤炭转化,2000,02:53-58
    [40]鲁勋,罗来涛,程新孙.Ce含量对Pd/AL2O3催化剂加H脱硫性能的影响[J].环境科学与技术,2008,05:91-94
    [41]许鸿雁,李春虎,梁美生,王永刚.铁酸锌高温煤气脱硫剂的活性评价及表征[J].化工环保,2004,03,165-168
    [42]Focht G D, Ranade P V and Harrison D P. High-Temperature Desulfurization Using Zinc Ferrite: Reduction and Sulfidation Kinetics[J].Chemical Engineering science,1988,43: 3005-3013
    [43]Sa L A, Focht G D, Ranade P V and Harrison D P. High-Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes[J].Chemical Engineering Science, 1989, 44(2):215-224
    [44]Droog H A,Delwel A,Assoml R.Comparison of High Temperature Gas Treatment Options with Low temperature Gas Treatment in IGCC’s Following Ent rained Flow Gasification[C]∥Proceedings 12th EPRI Conference on Gasification PowerPlant s,San Francisco,27,1993
    [45]于芳芳,张志娟,伍健东.高温煤气脱硫剂铁酸锌的性能及再生研究[J].化学与生物工程,2008,25(2),62-65
    [46]李为,黄戒介,赵建涛.Ni-Zn-Fe复合氧化物脱硫剂的制备及成型研究[J].煤炭转化,2009,02:50-53
    [1]侯鹏飞.氧化铁基高温煤气脱硫剂再生研究[D].太原理工大学,2008
    [2]朱永军.高温煤气脱硫剂金属氧化物间的相互作用[D].太原理工大学,2008
    [3]许鸿雁.中低温下350℃-450℃铁酸锌脱硫剂的制备表征与活性评价[D].太原理工大学,2002
    [4]朴玲钰,李春虎,李彦旭.ZnFe2O4高温煤气脱硫剂的再生[J].高校化学工程学报,2002,16(1):89-92
    [5]吴建芝.改性活性半焦脱除原料气中H2S的研究[D].中国海洋大学,2007
    [6]肖驰.油罐铁的硫化物“自燃”危害及防护措施[J].安全健康与环境,2003,3(12):10-11
    [7]ClarkP.D.,DowlingN.L.,Huang.M.克劳斯催化过程的实际情况[J].硫酸工业,2006,4:21-28
    [8]于芳芳,张志娟,伍健东.高温煤气脱硫剂铁酸锌的性能及再生研究[J].化学与生物工程,2008,25,2,62-65
    [9]许鸿雁,梁美生,李春虎,等.铁酸锌高温煤气脱硫剂硫化再生性能的研究[J].中国机工程学报,2004,24(5),198-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700