用户名: 密码: 验证码:
流动注射法监测食品用水中重金属突发性污染
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品用水突发性污染事件的发生呈上升趋势,食品用水安全面临挑战,加强对食品用水突发性污染的在线监测已成为各级政府突发事件应急管理的研究重点。
     本文以铅、镉、汞离子为对象,研究食品用水中重金属突发性污染的早期快速预警。主要内容包括(1)食品用水电导率、pH值变化和化学污染物的关系;(2)流动注射发光细菌(青海弧菌Q67)监测食品用水突发性重金属污染的适用性;(3)流动注射二甲酚橙分光光度法检测食品用水中铅离子;(4)流动注射P矩阵分光光度法测定食品用水中镉离子。主要结果如下:
     1.金属离子浓度的增加可引起电导率的增大,但在标准值的1000倍以下增加的幅度很小,与空白对照差异不显著,只有当金属离子超过饮用水标准的1万倍时,才会引起电导和pH值的显著变化。且Pb2+浓度与电导率的相关性小。
     2.建立了流动注射系统与生物发光检测仪相结合的体系,采用新鲜培养的发光细菌(pH 6.75培养17 h的青海弧菌Q67菌悬液)为实验菌测定重金属。拟合发光抑制率-浓度曲线,进而推断出三种重金属Hg2+、Pb2+、Cd2+的EC50分别为0.57 mg/L、20.58 mg/L、10.51mg/L,毒性大小为Hg2+>Cd2+>Pb2+。
     3.通过580 nm处测定XO与Pb(Ⅱ)生成的紫红色螯合物的吸光值,建立流动注射二甲酚橙分光光度法测定Pb(Ⅱ)的方法。该方法以1.5×10-3mol/L的XO为显色剂,1%的Triton X-100为增敏剂,0.02 mol/L(pH=5)的醋酸-醋酸钠作缓冲液,。测定Pb(Ⅱ)在2~10 mg/L范围内成线性,最低检出限为0.164 mg/L。
     4.在pH9.0的NH4Cl-NH3·H2O缓冲体系下,镉、锌、铜与显色剂2-(5-溴-2-吡啶氮)-5-二乙氨基酚(5-Br-PADAP)发生显色反应。在400~700 nm波长下,建立P矩阵多元回归校正模型,Cu2+的回收率接近100%,Cd2+回收率在另两种离子浓度很小时,回收率分别为95.8和104.0%,但当Cu2+、Zn2+浓度很大,而Cd2+浓度很小时,回收率仅为78.9%。
     结果表明,流动注射分光光度法和化学计量技术的联用,有可能实现对食品用水重金属突发性污染的在线监测和预警。
Emergency pollution of food water incidence is increasing and the safety of drink water face serious challege. Unknown sudden pollution of food water is one of the key research areas in the emergency management adminishered by governments. The purpose of this study was to investigate the possibility of the early warning of heavy metal such as lead, cadmium and mecury sudden pollution in food water, with the main content:
     (1) Evaluation of the correlation between the electric conductivity, pH value and heavy metal pollution; (2) Determination of Hg(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) with V. qinhaiensis by coupling flow injection-bioluminescence method; (3) Determination of Pb(Ⅱ) by flow injection analysis(FIA) spectrophotometry. (4) Determination of Cd(Ⅱ) in drinking water by FIA spectrophotometry using chemometrics-p matrix. The main results were as follows:
     (1) There were positive correlation between electric conductivity and the concentration of heavy metals, but the discrepancy wasn't significant when the concentration was below in 1000 times of the maximum levels for GB prescribled, except for Pb(Ⅱ).
     (2) An on-line FIA combined with luminescent instrument was set up to detect the metal ions via freshly prepared luminescent bacteria suspension (Vibro qinhaiensis sp.Q67 suspension were at the optimum cultivation pH of 6.75 for 17 h). Fit the luminescent inhibition-metal concentration line, it was indicated that 50% effective concentration (EC50) of Hg(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) were 0.57 mg/L,20.58 mg/L and 10.51 mg/L respectively. And the toxicity sequence from large to small was:Hg2+, Cd2+, Pb2+.
     (3) Based on the maximum absorption of the Pb(II)-xylenol orange (XO) complex was at 580 nm, determination of lead by using FIA with spectrophotometric was constructed. The results were showed that a solution 1.5×10-3mol/L XO in 0.02 mol/L acetate buffer (pH 5.0), in the presence of triton X-100 led to the sensitive color reaction of lead and XO, and it followed the beer's law in the concentration range of 2-10 mg/L with the LOD of 0.164 mg/L.
     (4) At the buffer solution (pH 9.0) of NH4Cl-NH3.H2O, the Zn2+, Cu2+, Cd2+were colored with 2-[(Bromo-2-pyridyl)-azo]-5-diethyl-aminophenol. Under the absorbent spectrum of 400-700 nm wavelength, the concentration of Cd(Ⅱ) was predicted with P-matrix model. The recoveries of Cu2+was approximately to 100%, and the Cd2+was 95.8-104.0% when Cu2+and Zn2+ were in low concentration.
     Rusults above concludes that combination of FIA, spectrophotometry and P-matrix model could detect the emergency pollution of heavy metals in the food water and alarm early this pollution on-line.
引文
[1]Gleick, P. H., Cooley, H.,& Katz, D. The world's water,2006-2007:the biennial report on freshwater resources [M]. Washington, D C:Island press.2009.
    [2]高娟,李贵宝,刘晓茹,华珞.国内外生活饮用水水质标准的现状与比对[J].水利技术监督,2005,(3):61~63.
    [3]何文杰.安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
    [4]郭振仁,张剑鸣,李文禧.突发性环境污染事故防范与应急[M].北京:中国环境科学,2006.
    [5]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2007.
    [6]Gleick, P. H. Water and terrorism [J]. Water Policy,2006, (8):493-495.
    [7]王宏伟.突发事件应急管理:预防处置与恢复重建[M].北京:中央广播电视大学出版社,2009.
    [8]Foran, J. A.,& Brosnan, T. M. Early warning system for hazardous biological agent in potable water [J]. Environmental Health Perspectives,2000,108(10):993-995.
    [9]Gullick, R.W., Gaffney, L. J., Crockett, C. S., Schulte, J.,& Gavin, A. J. Developing regional early warning systems for US source waters [J]. American Water Works Association,2004, 96(6):68-84.
    [10]Puzicha, H. Evaluation and avoidance of false alarm by controlling Rhine water with continuously working biotests [J]. Water Science Technology,1994,29(3):207-209.
    [11]Borcherding, J.,& Volpers, M. The"dreissena-monitor"-first results on the application of this biological early warning system in the continuous monitoring of water quality [J]. Water Science Technology,1994,29:199-201.
    [12]Gerhardt, A.,& Clostermann, M. A new biomonitor system based on magnetic inductivity for fresh water and marine environments [J]. Environmental International,1998,24(7): 699-701.
    [13]Pinter, G. G The danube accident emergency warning system [J]. Water Science Technology, 1999,40(10):27-33.
    [14]Wang, G. S.,& Hsieh, S. T. Monitoring natural organic matter in water with scanning spectrophotometer [J]. Environment International,2001,26:205-212.
    [15]陈茂福,吴静,陈庆俊,律严励.城市污水的三维荧光指纹特征[J].光学学报,2008,28(3):578~582.
    [16]吴静,陈庆俊,陈茂福,律严励.城市污水的三维荧光指纹特征比较[J].光学学报,2008,28(10):2023~2025.
    [17]李嗣新,汪红军,周连凤,梁友光.水环境监测的生物早期预警系统研究与应用技术初探[J].环境污染与防治,2008,30(11):96~98.
    [18]Schalie, W. H., Shedd, T. R., Knechtges, P. L.,& Widder, M. W. Using higher organisms in biological early warning systems for real-time toxicity detection [J]. Biosensors and Bioelectronics,2001,16:457-465.
    [19]Kahru, A., Tomson, K., Pall, T.,& Kulm, I. A. Study of toxicity of pesticides using luminescent bacteria photobacterium phosphoreum [J]. Water Science and Technology, 1996,33(6):147-154.
    [20]邓辅财,刘树深,刘海玲,莫凌云.部分重金属化合物对淡水发光菌的毒性研究[J].生态毒理学报,2007,2(4):403~407.
    [21]Hayes, E., Upton, J., Batts, R.,& Pickin, S. On-line nitrification inhibition monitoring using immobilized bacteria [J]. Water Science and Technology,1998,37(12):193-196.
    [22]Okochi, M., Mima, K., Miyata, M.& Shinozaki, Y. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant [J]. Biotechnology and Bioengineering,2004,87(7):905-911.
    [23]李志良.鱼类行为学在水质在线监测与预警中的应用研究[D].山东:山东师范大学,2008.
    [24]Samson, G.,& Popovic, R. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants [J]. Ecotoxicology and Environmental Safety,1988,16(3):272-278.
    [25]Twist, H., Edwards, A. C.,& Codd, G. A. A novel in-situ biomonitor using alginate immobilized algae(Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters [J]. Water Research,1997,31(8):2066-2072.
    [26]Naessens, M.,& Tran-Minh, C. Whole-cell biosensor for direct determination of solvent vapours [J]. Biosensors and Bioelectronics,1998,13(3-4):341-346.
    [27]Tahedl, H.,& Hader, D. P. Fast examination of water quality using the automatic biotest ECOTOX based on the movement behavior of a freshwater flagellate [J]. Water Research, 1999,33:426-432.
    [28]Hendriks, A. J.,& Stouten, M. D. Monitoring the response of microcontaminants by dynamic Daphni amagna and Leuciscus idus assays in the Rhine delta:biological early warning as a useful supplement [J]. Ecotoxicology and Environmental Safety,1993,26: 265-279.
    [29]Watson, S. B., Juttner, F.,& Kopster, O. Daphnia behavioural responses to taste and odour compounds:ecological significance and application as an inline treatment plant monitoring tool [J]. Water Science and Technology,2007,55(5):23-31.
    [30]仇雁翎,陈玲,赵健夫.饮用水水质监测与分析[M].北京:化学工业出版社,2006:118~119.
    [31]Gray, J.,& Thompson, K. C. Water contamination emergencies [M]. UK:the royal Society of Chemistry.2006:192-197.
    [32]约翰.埃姆斯雷,李永舫译.元素化学[M].北京:人民教育出版社,1994.
    [33]常元勋.金属毒理学[M].北京:北京大学医学出版社.2005.
    [34]杜瑜,尚琪.环境镉污染人群健康影响研究回顾[J].卫生研究,2006,35(2):241~243.
    [35]袁小鸣.镉对儿童的危害[J].中国公共卫生学报,1991,10(4):254~255.
    [36]黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展[J].安徽农业科学,2007,35(9):2528~2531.
    [37]张英,周长民.重金属铅污染对人体的危害[J].辽宁化工,2007,36(6):395~397.
    [38]Daher, R. T. Trace metals (lead and cadmium exposure screening) [J]. Analytical Chemistry, 1995,67:405-407.
    [39]贾玲侠,宋文斌.城市铅污染对人体健康的影响及防治措施[J].微量元素与健康研究,2007,24(6):38-41.
    [40]Leermakers, M., Baeyens, W, Quevauviller, P.,& Horvat, M. Mercury in environmental samples:speciation, artifacts and validation [J]. Trends Analytical Chemistry,2005,24(5): 383-393.
    [41]Peixoto, N. C, Seram, M. A., Flores, M. M., Bebianno, M. J.,& Pereira, M. E. Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury [J]. Life Science,2007,81(16):1264-1271.
    [42]De, A. K. Enviromental Chemistry (Fifth edition) [M]. New Delhi:New age international limited,2005,98-99.
    [43]冯宁,何涛.汞污染对中枢神经系统发育影响的研究进展[J].国际检验医学杂志,2006,27(5):461~462.
    [44]Rezaei, B., Meghdadi, S.,& FazelZarandi, R. A fast response cadmium-selective polymeric membrane electrode based on N, N-(4-methyl-1,2-phenylene) diquinoline-2-carboxamide [J]. Journal of Hazardous Materials,2008,153:179-186.
    [45]Mousavi, M. F., Sahari, S., Alizadeh, N.,& Shamsipur, M. Lead ion-selective membrane electrode based on 1,10-dibenzyl-1,10-diaza-18-crown-6 [J]. Analytica Chimica Acta,2000, 414(1-2):189-194.
    [46]Ganjali, M. R., Hosseini, M., Basiripour, F., Javaanbakht, M., Hashemi, O. R.,& Rastegar, M. F. Novel coated-graphite membrane sensor based on N, N'-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead [J]. Analytica Chimica Acta, 2002,464(2):181-186.
    [47]Oehme, I.,& Wolfbeis, O. S. Optical sensors for determination of heavy metal ions [J]. Microchimica Acta,1997,126:177-192.
    [48]Radloff, D., Matern, C., Plaschke, M., Simon, D., Reichert, J.& Ache, H. J. Stability improvement of an optochemical heavy metal ion sensor by covalent receptor binding [J]. Sensor and Actuators B:Chemical,1996,35(1-3):207-211.
    [49]Fouladgar, M.,& Ensafi, A. A. A novel optical chemical sensor for thallium(III) determination using 4-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol [J]. Sensors and Actuators B:Chemical,2010,590-594.
    [50]Kalyan, Y., Pandey, A. K.,& Bhagat, P. R. Membrane optode for mercury(II) determination in aqueous samples [J]. Journal of Hazardous Materials,2009, (166):377-382.
    [51]Tadeusz, K., Malgorzata, M.,& Trojanowicz, M. Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor [J]. Biosensors and Bioelectronics,2000, 15:681-691.
    [52]Haron, S.,& Ray, A. K. Optical biodetection of cadmium and lead ions in water [J]. Medical Engineering and Physics,2006,28(10):978-981.
    [53]Ruzicka, J.,& Hansen, E. H. Flow Injection Analysis [M]. New York:John Wiley and Sons, 1981.
    [54]方肇伦.流动注射分析法[M].北京,科学出版社,1999.
    [55]申金山,周青泽,王听.TI(Ⅰ)-Cr(Ⅵ)-碘化钾-鲁米诺体系化学发光法测定铊[J].理化检测(化学分册).1996,32(5):293~295.
    [56]李卫华.合反应流动注射化学发光法测定汞[J].理化检测(化学分册),1999,35(10):457~459.
    [57]Satienperakul, S., Cardwell, T. J., Kolev, S. D., Lenehan,C. E.,& Barnett, N. W. A sensitive procedure for the rapid determination of arsenic(Ⅲ) by flow injection analysis and chemiluminescence detection [J]. Analytica Chimica Acta,2005,554(1-2):25-30.
    [58]Huang, B., Li, J. J., Zhang, L.,& Cheng, J. K. On-line chemiluminescence detection for capillary ion analysis [J]. Analytical Chemistry,1996,68:2366-2369.
    [59]Amini, N.,& Kolev, S. D. Gas-diffusion flow injection determination of Hg(Ⅱ) with chemiluminescence detection [J]. Analytica Chimica Acta,2007,582(1):103-108.
    [60]吴英华,孟杰,马廷升,任凤莲.流动注射分光光度法测定废水中的砷[J].皮革科学与工程,2009,19(3):67~69.
    [61]吴宏,王镇浦,陈国松.流动注射-分光光度法测定水中的痕量Cr(Ⅲ)和Cr(VI)[J].分析试验室,2001,20(5):65~67.
    [62]孙青萍.流动注射光度法测定水中氰化物[J].理化检验(化学分册),2004,40(1):35~36.
    [63]Nezio, M. S., Palomeque, M. E.,& Band, B. F. A sensitive spectrophotometric method for lead determination by flow injection analysis with on-line preconcentration [J]. Talanta, 2004,63(2):405-409.
    [64]Feng, Y. L.,& Tian, L. C. Flow-injection spectrophotometric determination of mercury(Ⅱ) in water by the catalytic decomposition of ferrocyanide [J]. Analytical Sciences,1999,15(9): 915-918.
    [65]肖新峰,王照丽,罗娅君.流动注射分光光度法测定镉(Ⅱ)的研究与应用[J].化学研究与应用,2003,19(8):910~913.
    [66]袁东,付大友,张丽萍,谭文渊,张新申.流动注射分光光度法测定废水中砷[J].冶金分析,2007,27(8):43~45.
    [67]李舒婷,赵书林.流动注射分光光度法测定微量镉的研究[J].分析科学学报,2000,16(2):135~137.
    [68]陈菊,赵书林.流动注射分光光度法测定微量镉的研究[J].分析科学学报,2000,7(2):135~137.
    [69]周雅琳,阚建全.电导率法快速检测煎炸油中极性化合物的研究[J].食品工业科技,2009,30(4):321~322.
    [70]胡小泓,刘志金.应用电导率检测潲水油方法的研究[J].食品科学,2007,28(11):82~84.
    [71]中华人民共和国药典(第二版).北京:人民卫生出版社[M],1990,附录51~52.
    [72]周禾,杨起简.生物发光与生物超微弱发光[J].北京农学院学报,1995,10(2):23~25.
    [73]GB/T 15441-1995,水质急性毒性测定发光细菌法[S].
    [74]Girotti, S., Ferri, E. N., Fumo, M. G.,& Maiolini, E. Review:Monitoring of environmental pollutants by bioluminescent bacteria [J]. Analytica Chimica Acta, 2008,608:25-29.
    [75]莫凌云,刘海玲,刘树深.5种取代酚化合物对淡水发光菌的联合毒性[J].生态毒理学报,2006,1(3):259~265.
    [76]刘清,马梅,童中华,王子健.Cu、Zn、Cd、Hg对青海弧菌(Q67菌株)联合毒性作用的研究[J].中国环境科学,1997,17(4):301~303.
    [77]周世民,赵清,舒为群.青海弧菌Q67新鲜培养菌液测试水中砷铅镉汞的急性毒性[J].预防医学情报杂志,2008,24(6):430~405.
    [78]Hsich, C. H., Tsai, M. H., Ryan, D. K.,& Pancorbo, O. C. Toxicity of the 13 priority pollution metals to Vibrio fisheri in the Microtox chronic toxicity test [J]. Science of the total Enviroment,2004,320(1):37-50.
    [79]Polyak, B., Bassis, E., Novodvorets, A., Belkin, S.,& Marks, R. S. Bioluminescent whole cell optical fiber sensor to genotoxicants:system optimization [J]. Sensors and Actuators B: Chemical,2001,74(1-3):18-26.
    [80]Eltzov, E., Marks, R. S.,& Voost, S. Flow-through real time bacterial biosensor for toxic compounds in water [J]. Sensors and Actuators B:Chemical,2009,142:11-18.
    [81]尹哲俊.铅(Ⅱ)-碘化钾-丁基罗丹明B-阿拉伯胶-Triton X-100体系分光光度法测定痕量铅[J].分析化学,1989,17(7):750~751.
    [82]潘振声,潘教麦.二溴对氯氮羧胂分光光度法测定微量铅[J].冶金分析,2007,27(1):54~55.
    [83]范晓燕,董杰.Pb(Ⅱ)-双硫腙-PAR水相光度法测定样品中铅[J].理化检测(化学分册),2001,37(6):258~260.
    [84]Havel, J., Moreno, C., Hdrlicka, A.,& Valiente, M. Spectrophotometric determination of rare earth elements by flow injection analysis based on their reaction with xylenol orange and cetylpyridinium bromide [J]. Talanta,1994,41(8):1251-1254.
    [85]Mochizuki, T., Toda, Y.,& Kuroda, R. Flow-injection analysis of silicate rocks for total iron and aluminium [J]. Talanta,1982,29(8):659-662.
    [86]Marcelo, H. L, William, G. W.,& Kenneth, B. S. Quantification of lipid peroxidation in tissue extracts based on the Fe(Ⅲ) xylenol orange complex formation [J]. Free Radic Biology and Medicine,1995,19(3):271-280.
    [87]周文辉,周秀林.5-Br-PADAP分光光度法测定环境水中微量锌[J].工业水处理,2006,26(10):74~75.
    [88]赵桦萍,赵丽杰,白丽.5-Br-PADAP-Triton X-100-β-环糊精体系分光光度法测定电镀废水中镉[J].冶金分析,2007,27(10):47~49.
    [89]吴小华,方克鸣,缪吉根,陈建荣.Fe(Ⅲ)-5-Br-PADAP络合物光化学还原反应的抑制及其分析应用[J].分析实验室,2007,26(5):46~48.
    [90]Ferreira, S. C., Costa, A. C.,& de Jesus, D. S. Derivative spectrophotometric determination of nickel using Br-PADAP [J]. Talanta,1996,43(10):1649-1656.
    [91]Salim, R.,& Shraydeh, B. Sensitive spectrophotometric determination of bismuth (Ⅲ) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [J]. Microchemical Journal,1985,32(1): 83-88.
    [92]Raimundo, I. M.,& Narayanaswamy, R. Simultaneous determination of Zn(Ⅱ), Cd (Ⅱ) and Hg (Ⅱ) in water [J]. Sensor and Actuators B:Chemical,2003,90(1-3):189-197.
    [93]许禄,邵学广.化学计量学方法(第二版)[M].北京:科学出版社,2004,179-190.
    [94]GB 5750-1985,饮用水标准检验法[S].
    [95]王勇,倪永年.多元校正-多波长分光光度法同时测定水样中锌,镉和钴[J].南昌大学学报理科版,2007,31(1):82~84.
    [96]倪永年.最小二乘分光光度法用于多组分分析[J].岩矿测试,1989,8(4):258~261.
    [97]许国根,许萍萍.化学化工中的数学方法及MATLAB实现[M].北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700