用户名: 密码: 验证码:
核主泵过流部件水力设计与内部流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在充分阐述和比较各种水力设计方法优缺点的基础上,参考我国最新引进的AP1000核主泵相关水力参数,首先按照一元理论的速度系数法将设计转速由1750r/min降低到1450r/min设计核主泵过流部件,以适应我国50Hz电网的需求。然后利用CFD软件FLUENT对其内部高温高压流场进行全流量数值模拟,揭示了核主泵内部不同流量下的内部流场特征,并且在叶轮和导叶连接处发现二次流现象,在压水室出口处发现回流现象。
     为了弄清楚高温高压工况对核主泵水力性能的影响,文中对比常温常压工况,绘制出流量-效率,流量-扬程曲线图。模拟结果表明基于清水为工质制定的系数图表对于核主泵依然适用,利用传统的速度系法设计特殊核主泵过流部件是可行的。高温高压与常温常压工况相比,只是改变了工质的物性参数,对泵的扬程不会产生变化,泵的效率略有提高。
     文中还根据AP1000这种径流式混流泵的特殊结构,利用离心泵径向导叶正导叶的设计方法设计出径向型叶片的导叶,综合利用空间导叶和保角变换的设计方法,设计出扭曲型叶片的导叶。分别对两种导叶模型内部流场进行数值模拟,结果表面扭曲型叶片的导叶能更好的将动能转化为压能,扬程和效率均优于径向型导叶模型。
     本文探索了核主泵过流部件的水力设计方法,并且取得了一定的成果,为核主泵高效水力模型优化设计提供了有益的参考。
In this paper which refer to the parameters of AP1000, a variety of hydraulic designed methods are fully compared, then the hydraulic model which rotation speed is 1450r/min is designed by way of velocity modulus in order to meet domestic power grid frequency of 50Hz..Then the inner high temperature and high pressure flow field are simulated by using the CFD software of FLUENT, the results show the characteristic of the inner flow field of the nuclear main pump in different flow rate and refluence phenomena in the outlet of pumping chamber. The secondary flow phenomena is also discovered in the impeller and diffuser junction
     In order to clarify the influence of temperature and pressure conditions on the nuclear main pump hydraulic performance, the curve of Flow-Efficiency and Flow-Head are drawn in the condition of high temperature and high pressure and in the condition normal temperature and normal pressure separately. The simulation results show that the modulus charts which working medium is clean water is still applicable for the nuclear main pump and the hydraulic model of nuclear main pump which is designed by using the traditional velocity modulus is feasible. Compared the conditions of normal temperature and normal pressure, the conditions of high temperature and high pressure only change the physical parameters of the working medium, the pump head has little change, the pump efficiency increased slightly.
     The radial diffuser based on the special structure of AP1000 is designed by the way of centrifugal pump radial diffuser, the twist diffuser based on the special structure of AP1000 is designed by the way of vaned diffuser and conformal transformation. Then the two diffuser models are simulated, the results show that twist diffuser model is better than radial diffuser model on pump head and efficiency.
     In this paper,the design method of nuclear main pump is explored and some achievements are gained which will provide some useful references for hydraulic optimized design.
引文
[1]马栩泉.核能开发与应用[M].北京:化学工业出版社,2005.
    [2]苏永杰,姜维国,邵海江等.核能利用与环境保护[J].核科学与工程,2003,20(4)
    [3]米建华,王卓昆.电力行业节能现状与措施[J].中国科技投资,2006,(9).
    [4]汪永平,赵守峰,袁玉俊等.2020年中国核能发展战略研究[J].中国核科技报告,2005,(1).
    [5]蔡龙,张丽萍.浅谈压水堆核电站主泵[J].水泵技术,2007,(4):1-9.
    [6]秦武,李志鹏,沈宗沼等.核反应堆冷却剂循环泵的现状及发展[J].水泵技术,2007(3):1-6.
    [7]季建刚,孔繁余,孔祥花.屏蔽泵发展综述[J]水泵技术,2006,(1):15-20.
    [8]黄成铭.轻水堆核电站主冷却剂泵的发展动向[J].核动力工程,1988,09(02):28-33.
    [9]Poullikkas A. Effects of two phase liquid-gas flow on the performance of nuclear reactor cooling pumps [J]. pro-gress in Nuclear Energy,2003,42(1):3-10.
    [10]盛选禹,雒晓卫,傅激扬.反应堆主泵抗震强度的三维实体模型计算[J].核动力工程,2005,26(5):471-474.
    [11]李颖.核主泵叶轮非定常流场及疲劳寿命可靠性分析[D].上海:上海交通大学核能科学与工程,2009.
    [12]洪振旻.大亚湾核电站核主泵机械密封泄漏量异常研究[D].上海:上海交通大学核能与核技术工程,2009.
    [13]刘夏杰.断电事故下核主泵流动及振动特性研究[D].上海:上海交通大学核能科学与工程,2009.
    [14]陈明华.核泵水润滑轴承节流器阻尼特性研究[D].大连:大连理工大学工程力学,2008
    [15]李尔康.论中国核电技术自主研发之路.
    [16]张明乾,刘昱,李承亮.浅谈压水堆核电站AP1000屏蔽式电动主泵.水泵技术,2008,(4).
    [17]张华祝.第三代核电技术与中国核能行业的发展[J].国防科技工业,2007,(06).
    [18]Laksh minarayana B. An Assessment of Computational Fluid Dynamie Techniques In the Analysis and Design of Turbo-machinery[J]. The 1990 Free man Scholar Lecture. Journal of Fluids Engineering,1991:113-352.
    [19]M. Sallaber, M. Fisler. The Design of Francis Turbine Runners by 3D Euler Simulations Coupled to a Breeder Genetic Algorithm[C]. IAHR Symposium 2000.
    [20]Bernard Masse, Maryse Page. Improving Efficiency of a 195 MW Francis Turbine Using Numerical Simulation Tools[C]. IAHR Symposium 2000.
    [21]任静,吴玉林.水力机械转轮的CFD分析及优化设计[J].工程热物理学报,2000,(5):316-320
    [22]阎超.流体机械内部流动数值模拟计算方法的新进展(一)[J].流体机械,1994,22(8):35-38.
    [23]阎超.流体机械内部流动数值模拟计算方法的新进展(二)[J].流体机械,1994,22(9):33-37.
    [24]张莉,陈汉平,徐忠.离心压缩机叶轮内部流场的准三元迭代数值分析[J].风机技术,2000,(5):3-7.
    [25]陈倩,章本照,崔良成.离心风机三元流场的准正交面法计算[J].杭州应用工程技术学院学报,2000(增刊),12:21-23.
    [26]陈德江,王尚锦.应用有限元法计算离心式叶轮内部流场[J].应用力学学报,1999,16(1):27-32.
    [27]T. Luu, B. Viney, L. Bencherif. Inverse problem using S2-S1 approach for the design of The turboomachine with spliter blades[J]. RFM, Revue Francaise de Mecanique,1992,65(3):209-220.
    [28]王富军.考虑滑移的离心泵叶片S2流面反问题计算方法[J].水利学报,1998,49(1):10-13.
    [29]赵斌娟,王泽.离心泵叶轮内流数值模拟的现状和展望[J].农机化研究,2002,(3):49-50.
    [30]Epureanu B I.HallK C,Dowell E H. Reduced Order Models of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Coupling[J]. Journal of Fluids and Structures 2001,15:255-273.
    [31]王灿星,林建忠,宋向群.多叶离心通风机内部流场的计算[J].风机技术,1997,(4):6-9.
    [32]蔡兆麟,罗晟.流体机械叶轮内二次流及尾迹发展[J].华中科技大学学报,2001,29(增刊I):8-10.
    [33]袁卫星,张克危,贾宗谟.离心泵射流-尾迹模型的三元流动计算[J].水泵技术,1990,(1):12-18.
    [34]Barth T. J, Numerical aspects of computing viscous high Reynolds number flows on Unstructured meshes. AIAA Paper [C],1991,91-0721.
    [35]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [36]Kogaki T, Kobayashi T, Taniguchi N. Large eddy simulation of flow around a rectangular cylinder[J]. Fluid Dynamics Res.1997:41-44.
    [37]Tsung F L Loellbach J H. Development of an unsteady unstructured navier stockes solver for stator-rotor interact ion[C]. AIAA-96-2668.
    [38]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [39]孙建平.混流泵内三维边界层计算[J].水泵技术,1994(4):14-16.
    [40]朱自强,张正科,李津等.网格生成和数值模拟的讨论[J].空气动力学学报,1998,16(1):64-69.
    [41]阎维超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [42]陈池,陈寿其,金树德.低比速离心泵研究现状与展望[J].流体机械,1998,27(7):29-34.
    [43]张俊达,薛国富.速度系数统计[J].水泵技术,1990(1):19-23.
    [44]何希杰,劳学苏.离心泵系数法设计中新的统计曲线和公式[J].水泵技术,1997(5):30-37.
    [45]袁寿其,曹武陵,陈次昌.面积比原理和泵的性能[J].农业机械学报,1993,24(2):36-41.
    [46]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [47]金树德,陈次昌.现代水泵设计方法[M].北京:兵器工业出版社,1993.
    [48]袁寿其,曹武陵,陈次昌.低比速泵加大流量设计的实践[J].水泵技术,1992(3):43-46.
    [49]刘根宜.低比速离心泵叶片数的选择[J].水泵技术,1995(5):29-31.
    [50]沙毅,曹武陵.超低比转速离心式潜水泵设计实践[J].水泵技术,1997(2):3-5.
    [51]潘中永,袁寿其,刘瑞华.离心泵复合叶轮短叶片偏置设计研究[J].排灌机械,2004,22(3):1-4.
    [52]沈天耀.离心叶轮的内流理论基础[M].杭州:浙江大学出版社,1986.
    [53]朱祖超.低比转速复合离心叶轮设计探讨[J].水泵技术,1995(5):11-14
    [54]管仁强.离心泵叶轮水力模型无过载设计尝试[J].排灌机械,1999,17(2):1-12.
    [55]张玉新等.无过载离心式渣浆泵的理论和设计[G].全国第二届杂志泵及固体屋管道水力输送学术讨论会议文集,1997.7:48-53.
    [56]刘天宝,程兆雪.流体力学与叶栅理论[M].北京:机械工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700