用户名: 密码: 验证码:
不同分化状态的间充质干细胞向肝细胞生长因子的趋化性迁移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经胶质瘤是颅内最常见的恶性肿瘤,具有扩散和浸润的特性,即使经过外科手术切除,并辅以放疗或化疗,也难以彻底治愈。因此,需要新的治疗方法来追踪逃离常规治疗的散在瘤细胞。间充质干细胞(mesenchymal stem cells, MSCs)是具有多向分化潜能的成体干细胞,而且能够趋向胶质瘤及多种趋化因子迁移,从而成为治疗胶质瘤的理想载体细胞。然而MSCs定向迁移的机制还不是完全清楚,尤其是MSCs分化状态与迁移之间关系的研究还未见报道。本实验旨在研究不同分化状态的骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)向肝细胞生长因子(hepatocyte growth factor, HGF)的趋化性迁移。
     本研究首先采用Percoll密度梯度离心法从大鼠骨髓中分离出BMSCs,体外扩增培养,通过观察细胞形态、生长特性,免疫荧光染色,成骨、成脂诱导分化,对BMSCs进行鉴定。结果显示,分离培养的BMSCs为长梭形,增殖速度快,表面抗原CD29、CD90、CD106呈阳性,CD34、CD45为阴性,并且体外能够诱导分化为成骨细胞及脂肪细胞,证明分离培养的细胞是具有多向分化潜能的BMSCs。
     随后通过丁羟基茴香醚(butyl hydroxy anisol, BHA)联合碱性成纤维生长因子(basic fibroblast growth factor, bFGF)诱导BMSCs成神经分化,即先用10 ng/ml bFGF预诱导24 h,再用200μM BHA和2% DMSO诱导5 h,最后用含有N2的H-DMEM维持培养。观察该过程中细胞的形态变化,免疫细胞化学染色检测神经细胞特异性标志物nestin、β-III-tubulin及NSE的表达变化。结果显示,未分化BMSCs呈成纤维细胞样;预诱导24 h后,胞体稍有收缩,边缘变得不齐整;诱导5 h,胞体收缩成圆形或椭圆形,折光性强,有突起伸出;维持培养18 h后,细胞出现3个或更多突起;维持培养48 h,细胞突起更为复杂,出现二级分叉,突起长度增加,与其他细胞的突起相互接触。免疫荧光染色显示,nestin与β-III-tubulin的表达都呈现出先增高后降低的趋势,均在诱导5 h时达到最高值,之后显著下降;而NSE阳性细胞比率在诱导期以及维持前期都很低,到维持48 h显著升高;GFAP在整个诱导分化过程中始终为阴性。
     接着运用Dunn chamber装置研究了BMSCs及成神经分化不同状态BMSCs向HGF的趋化性迁移,计算细胞迁移速率和迁移效率。结果显示,在趋化性迁移实验中,即外槽加入不同浓度HGF、内槽只加L-DMEM时,细胞的迁移速率没有变化,迁移效率随着HGF浓度的增加而增高;与对照组(内外槽均只加入L-DMEM)相比,50 ng/ml及100 ng/ml HGF均显著提高了细胞的迁移效率,但两者之间没有差异。当内外槽均加入50 ng/ml HGF,细胞的迁移速率及迁移效率与对照相比无差异,表明HGF能够诱导BMSCs定向迁移。接着我们研究了成神经分化的BMSCs向HGF的趋化性迁移,结果显示外槽加入50 ng/ml HGF未能改变分化各点细胞的迁移速率,但显著提高了未分化、预诱导24 h、诱导5 h及维持48 h细胞的迁移效率,表明成神经分化的BMSCs向HGF的趋化迁移能力与其分化状态密切相关。用PI3K抑制剂LY294002(30μM)预处理1 h的BMSCs进行趋化迁移实验,外槽加入HGF后,细胞迁移效率与未处理组细胞相比显著降低,即LY294002阻断了HGF诱导BMSCs的定向迁移,证明PI3K信号通路参与介导HGF诱导BMSCs的定向迁移过程。
     最后,通过改变Rac1的表达水平,观察BMSCs随机迁移行为及HGF诱导的定向迁移行为的变化。发现Rac1过表达后,BMSCs迁移速率及趋向HGF的迁移效率显著提高;干扰Rac1表达后,迁移速率及趋向HGF的迁移效率显著降低。结果表明Rac1调节BMSCs的迁移速率,并且参与介导HGF诱导BMSCs的定向迁移过程。
     以上结果表明,HGF能够趋化BMSCs的定向迁移,PI3K信号通路参与介导这一过程;成神经分化的BMSCs趋向HGF的迁移能力与其分化状态密切相关。Rac1调节BMSCs迁移速率,并且介导HGF诱导BMSCs的定向迁移。本研究为进一步揭示BMSCs的定向迁移机制及临床应用BMSCs进行移植提供了理论基础。
Due to the infiltrating nature of tumors, the treatment of malignant gliomas invariantly fails despite extensive surgical excision and adjuvant radio- and chemo- therapy. Therefore, new therapeutic strategies are needed to selectively target tumor cells, including those that have escaped from the main tumor mass. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity to differentiate into osteoblasts, chondrocytes and adipocytes. In addition, the migratory capacity of MSCs towards gliomas and several chemotatic factors has made these cells attractive therapeutic tool in gene therapy for gliomas. However, little is known about the migratory capacity of MSCs with respect to their differentiation states. The aim of our study was to characterize the migratory behavior of bone marrow mesenchymal stem cells (BMSCs) during neurogenic differentiation in response to hepatocyte growth factor (HGF).
     BMSCs were isolated from bone marrow of rats by Percoll gradient centrifugation and expanded. The cells were characterized by morphology, antigen expression and differentiation potential. The results showed that BMSCs displayed fibroblast-like shape and proliferated quickly. Immunofluorescence analysis showed that BMSCs were positive for CD29, CD90, and CD106, and negative for CD34, CD45. Moreover, BMSCs were induced to differentiate into adipocytes and osteoblasts, demonstrating that these cells are multipotential BMSCs.
     BMSCs were induced to neuron-like cells by basic fibroblast growth factor (bFGF) combination with butyl hydroxy anisol (BHA). The undifferentiated BMSCs were fibroblast-like. After preinductin in 10 ng/ml bFGF for 24 h, the edge of the cells became rough. Cells after 5-h induction in medium containing 2% DMSO and 200μM BHA displayed nucleus refractile cell bodies and long branching processes, with the cytoplasm retracted towards the nucleus. After maintaining in H-DMEM containing N2 for 48 h, the processes continued to elaborate, displaying primary and secondary branches, growth cone-like terminal structures that frequently made contact with other cells. Immunofluorescence staining showed that the expression of neural stem cell marker nestin and early state neuronal markerβ-III-tubulin increased and peaked at 5-h induction, and then decreased significantly, while the ratio of cells expressing NES remained low before maintaining period and increased remarkably after maintaining for 48 h. The cells were constantly GFAP negative during differentiation.
     In this study, we utilized a Dunn chamber in conjunction with time-lapse video analysis to directly observe and follow the HGF-induced migration of differentiating BMSCs. The data recorded by Leica AF6000 were analyzed by NIH Image J to get migration speed and migration efficiency. The chemotaxis analysis, in which the outer well was filled with 50 ng/ml HGF and the inner well with L-DMEM only, showed that HGF did not change the migration speed of BMSCs, while the migration efficiency of BMSCs increased gradually with the increasing concentration of HGF. In contrast, neither the migration speed nor the migration efficiency was changed in the chemokinesis experiment in which both inner and outer wells were filled with 50 ng/ml HGF. The data indicate that HGF can induce the directed migration of BMSCs by chemotaxis. Next, we analyzed the chemotactic migration of BMSCs in neurogenic differentiation in response to the concentration gradients of HGF. The migration assay showed that HGF at 50 ng/ml did not change the migration speed of the cells at any state in neurongenic differentiation. However, HGF elevated the migration efficiency of undifferentiated BMSCs, and BMSCs pre-induced for 24 h, induced for 5 h and maintained for 48 h, but not those maintained for 18 h. The results indicate that the directed migration of BMSCs towards HGF is closely related to their differentiation states. To explore the role of PI3K signaling pathway in the tropism of BMSCs for HGF, the cells were pretreated for 1 h with LY294002 (30μM), a specific inhibitor of PI3K, and then used for chemotaxis assay. The data showed that the migration efficiency decreased significantly compared with untreated cells, indicating that PI3K participates in the directed migration of BMSCs to HGF.
     To determine the role of Rac1 in HGF-induced migration, we altered the Rac1 expression in BMSCs and then analyzed the migratory behavior of these cells. The results showed that both the migration speed and migration efficiency were increased by up-regulation of Rac1, while decreased by down-regulation of Rac1, suggesting that Rac1 regulates the HGF-induced migration of BMSCs.
     In conclusion, the isolated BMSCs from bone marrow by Percoll gradient centrifugation are multipotential and capable of differentiating into neuron-like cells by bFGF combination with BHA. HGF could induce the directional migration of BMSCs, which is mediated by the PI3K signaling pathway. In addition, the migration of cells during neurogenic differentiation towards HGF is closely related to their differentiation states. Rac1 regulates the migration speed and participates in the HGF-induced migration of BMSCs. The present study would contribute to better understanding of the directed migration of BMSCs and thus, help design strategies for the clinical applications of BMSCs.
引文
1. Sathornsumetee S, Rich JN. New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther, 2006, 6(7): 1087-1104.
    2. Jeon JY, An JH, Kim SU, Park HG, Lee MA. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med, 2008, 40(1): 84-91.
    3. Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, Berger MS, McDermott MW, Kunwar SM, Junck LR, Chandler W, Zwiebel JA, Kaplan RS, Yung WK. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol, 2003, 21(13): 2508-2518.
    4. Heese O, Disko A, Zirkel D, Westphal M, Lamszus K. Neural stem cell migration toward gliomas in vitro. Neuro Oncol, 2005, 7(4): 476-484.
    5. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000, 97(23): 12846-12851.
    6. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309): 71-74.
    7. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966, 16(3): 381-390.
    8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    9. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood, 2003, 102(10): 3483-3493.
    10. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun, 2001, 282(1): 148-152.
    11. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000, 164(2): 247-256.
    12. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370.
    13. Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 2002, 13(9): 1185-1188.
    14. Bjorklund A, Svendsen C. Stem cells. Breaking the brain-blood barrier. Nature, 1999, 397(6720): 569-570.
    15. Muller HW, Seifert W. A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res, 1982, 8(2-3): 195-204.
    16. Muller HW, Beckh S, Seifert W. Neurotrophic factor for central neurons. Proc Natl Acad Sci U S A, 1984, 81(4): 1248-1252.
    17. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005, 65(8): 3307-3318.
    18. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A,Honmou O, Niitsu Y, Hamada H. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther, 2004, 11(14): 1155-1164.
    19. Vogel G. Embryonic stem cells. Stem cells not so stealthy after all. Science, 2002, 297(5579): 175-177.
    20. Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H, Hamada T, Kato Y. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev, 2007, 16(1): 119-129.
    21. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, Goldbrunner R. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol, 2006, 199(2): 301-310.
    22. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643-2645.
    23. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2): 419-427.
    24. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med, 2006, 7(1): 19-24.
    25. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 2006, 24(5): 1254-1264.
    26. Matsuda-Hashii Y, Takai K, Ohta H, Fujisaki H, Tokimasa S, Osugi Y, OzonoK, Matsumoto K, Nakamura T, Hara J. Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1 alpha, and stem cell factor. Exp Hematol, 2004, 32(10): 955-961.
    27. Nishino T, Hisha H, Nishino N, Adachi M, Ikehara S. Hepatocyte growth factor as a hematopoietic regulator. Blood, 1995, 85(11): 3093-3100.
    28. Ding S, Merkulova-Rainon T, Han ZC, Tobelem G. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood, 2003, 101(12): 4816-4822.
    29. Qian LW, Mizumoto K, Maehara N, Ohuchida K, Inadome N, Saimura M, Nagai E, Matsumoto K, Nakamura T, Tanaka M. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett, 2003, 190(1): 105-112.
    30. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 2008, 26(6): 1575-1586.
    31. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3): 405-414.
    32. Matsumoto K, Date K, Ohmichi H, Nakamura T. Hepatocyte growth factor in lung morphogenesis and tumor invasion: role as a mediator in epithelium-mesenchyme and tumor-stroma interactions. Cancer Chemother Pharmacol, 1996, 38 Suppl: S42-47.
    33. Ridley AJ. Rho GTPases and cell migration. J Cell Sci, 2001, 114(Pt 15): 2713-2722.
    34. Narumiya S, Ishizaki T, Watanabe N. Rho effectors and reorganization of actin cytoskeleton. FEBS Lett, 1997, 410(1): 68-72.
    35. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol,2002, 22(18): 6582-6591.
    36. Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol, 2009, 247(4): 503-514.
    37. Tamura S, Kato T, Berho M, Misiakos EP, O'Brien C, Reddy KR, Nery JR, Burke GW, Schiff ER, Miller J, Tzakis AG. Impact of histological grade of hepatocellular carcinoma on the outcome of liver transplantation. Arch Surg, 2001, 136(1): 25-30; discussion 31.
    38. Oishi K, Itamoto T, Amano H, Fukuda S, Ohdan H, Tashiro H, Shimamoto F, Asahara T. Clinicopathologic features of poorly differentiated hepatocellular carcinoma. J Surg Oncol, 2007, 95(4): 311-316.
    1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309): 71-74.
    2. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol, 2004, 36(4): 568-584.
    3. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001, 19(3): 180-192.
    4. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells, 2004, 22(4): 487-500.
    5. Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C, Amri EZ. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol, 2008, 9: 26.
    6. Takagi K, Kudo A. Bone marrow stromal cell lines having high potential for osteoclast-supporting activity express PPARgamma1 and show high potential for differentiation into adipocytes. J Bone Miner Metab, 2008, 26(1): 13-23.
    7. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370.
    8. Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 2002, 13(9): 1185-1188.
    9. Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev, 2005, 14(1):65-69.
    10. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol, 2005, 57(6): 874-882.
    11. Karussis D, Kassis I, Kurkalli BG, Slavin S. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci, 2008, 265(1-2): 131-135.
    12. Ferrero I, Mazzini L, Rustichelli D, Gunetti M, Mareschi K, Testa L, Nasuelli N, Oggioni GD, Fagioli F. Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant, 2008, 17(3): 255-266.
    13.韩君,陈锐,陈槐卿.大鼠骨髓基质细胞的生长特点和在诱骨条件下的成骨特性.华西医大学报, 2001, 32(2): 235-239.
    14. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 2007, 25(3): 750-760.
    15. Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M. Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci, 2006, 119(Pt 13): 2667-2678.
    16. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966, 16(3): 381-390.
    17. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    18. Ueno H, Sakita-Ishikawa M, Morikawa Y, Nakano T, Kitamura T, Saito M. A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol, 2003, 4(5): 457-463.
    19. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell togene engineering. J Biomed Mater Res, 1999, 48(6): 913-927.
    20. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol, 1998, 176(1): 57-66.
    21. Guo Z, Yang J, Liu X, Li X, Hou C, Tang PH, Mao N. Biological features of mesenchymal stem cells from human bone marrow. Chin Med J (Engl), 2001, 114(9): 950-953.
    22. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997, 90(9): 3471-3481.
    23. Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest, 1999, 79(4): 449-457.
    24. Rickard DJ, Kazhdan I, Leboy PS. Importance of 1, 25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells. Bone, 1995, 16(6): 671-678.
    25.贾贵清,张明命,杨平,程惊秋,陆燕蓉,伍晓汀.不同分离及培养方法对大鼠骨髓间充质干细胞生长增殖和生物学特性的影响.四川大学学报(医学版), 2009, 40(4): 719-723.
    26.胡资兵,曾荣,郭伟韬,林颢.骨髓间充质干细胞诱导分化特征.中国组织工程研究与临床康复, 2008, 12(43): 8561-8566.
    27. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1): 67-73.
    28. Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem Suppl, 2002, 38: 7-12.
    29. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun, 1999, 265(1): 134-139.
    30. Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun, 2001, 289(2): 519-524.
    31. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem, 1999, 75(3): 424-436.
    32. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997, 64(2): 278-294.
    33. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem, 2001, 82(4): 583-590.
    34. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1988, 254(2): 317-330.
    35. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem, 2000, 275(13): 9645-9652.
    36. Yeon Lim J, Jeun SS, Lee KJ, Oh JH, Kim SM, Park SI, Jeong CH, Kang SG. Multiple stem cell traits of expanded rat bone marrow stromal cells. Exp Neurol, 2006, 199(2): 416-426.
    1. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol, 2004, 36(4): 568-584.
    2. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001, 19(3): 180-192.
    3. Vogel G. Embryonic stem cells. Stem cells not so stealthy after all. Science, 2002, 297(5579): 175-177.
    4. Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C, Amri EZ. Characterization of human mesenchymal stem cell secretome at earlysteps of adipocyte and osteoblast differentiation. BMC Mol Biol, 2008, 9: 26.
    5. Takagi K, Kudo A. Bone marrow stromal cell lines having high potential for osteoclast-supporting activity express PPARgamma1 and show high potential for differentiation into adipocytes. J Bone Miner Metab, 2008, 26(1): 13-23.
    6. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370.
    7. Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 2002, 13(9): 1185-1188.
    8. Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev, 2005, 14(1): 65-69.
    9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000, 164(2): 247-256.
    10. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun, 2001, 282(1): 148-152.
    11. Choi CB, Cho YK, Prakash KV, Jee BK, Han CW, Paik YK, Kim HY, Lee KH, Chung N, Rha HK. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 2006, 350(1): 138-146.
    12. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res, 2004, 77(2): 174-191.
    13. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, Medico E, Madon E, Vercelli A, Fagioli F. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp Hematol, 2006, 34(11): 1563-1572.
    14. Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res, 1995, 84(1): 109-129.
    15. Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, Nakayama N, Boyce BF, Abe E, Manolagas SC. Interleukin-6-type cytokines stimulatemesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians, 1998, 110(6): 559-574.
    16. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol, 1998, 142(1): 295-305.
    17. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998, 238(1): 265-272.
    18. Abouelfetouh A, Kondoh T, Ehara K, Kohmura E. Morphological differentiation of bone marrow stromal cells into neuron-like cells after co-culture with hippocampal slice. Brain Res, 2004, 1029(1): 114-119.
    19. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999, 96(19): 10711-10716.
    20. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10): 1291-1302.
    21. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Natl Acad Sci U S A, 1998, 95(7): 3908-3913.
    22. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A, 2002, 99(4): 2199-2204.
    23. Nakano K, Migita M, Mochizuki H, Shimada T. Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation, 2001, 71(12): 1735-1740.
    24. Muller HW, Seifert W. A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res, 1982, 8(2-3): 195-204.
    25. Muller HW, Beckh S, Seifert W. Neurotrophic factor for central neurons. Proc Natl Acad Sci U S A, 1984, 81(4): 1248-1252.
    26. Tao H, Rao R, Ma DD. Cytokine-induced stable neuronal differentiation ofhuman bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Dev Growth Differ, 2005, 47(6): 423-433.
    27. Scintu F, Reali C, Pillai R, Badiali M, Sanna MA, Argiolu F, Ristaldi MS, Sogos V. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments. BMC Neurosci, 2006, 7: 14.
    28. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res, 2002, 69(6): 908-917.
    29. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol, 2005, 203(2): 398-409.
    30. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci, 2000, 113 ( Pt 7): 1161-1166.
    31. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 2006, 24(2): 462-471.
    32. Neubauer M, Fischbach C, Bauer-Kreisel P, Lieb E, Hacker M, Tessmar J, Schulz MB, Goepferich A, Blunk T. Basic fibroblast growth factor enhances PPARgamma ligand-induced adipogenesis of mesenchymal stem cells. FEBS Lett, 2004, 577(1-2): 277-283.
    33. Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells, 2003, 21(4): 437-448.
    34. Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci, 1999, 19(19): 8487-8497.
    35. Vaccarino FM, Schwartz ML, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin JD, Wyland JJ, Hung YT. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci, 1999, 2(3): 246-253.
    36. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, LisbergA, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893): 41-49.
    37. Lei Z, Yongda L, Jun M, Yingyu S, Shaoju Z, Xinwen Z, Mingxue Z. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int, 2007, 31(9): 916-923.
    38. Zhang H, Wang JZ, Sun HY, Zhang JN, Yang SY. The effects of GM1 and bFGF synergistically inducing adult rat bone marrow stromal cells to form neural progenitor cells and their differentiation. Chin J Traumatol, 2004, 7(1): 3-6.
    39. Qian X, Davis AA, Goderie SK, Temple S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron, 1997, 18(1): 81-93.
    40.江和碧,卓本慧,代英,瞿平,李廷玉. bFGF促进大鼠骨髓间充质干细胞向神经元转化及机制.第三军医大学学报, 2005, 27(2): 98-101.
    41. Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev, 1995, 53(2): 275-287.
    42. Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 1994, 368(6467): 147-150.
    1. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS, Linet MS. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst, 1999, 91(16): 1382-1390.
    2. Surawicz TS, Davis F, Freels S, Laws ER, Jr., Menck HR. Brain tumor survival: results from the National Cancer Data Base. J Neurooncol, 1998, 40(2): 151-160.
    3. Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro Oncol, 1999, 1(1): 14-25.
    4. Dunn IF, Black PM. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery, 2003, 52(6): 1411-1422; discussion 1422-1414.
    5. Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov, 2004, 3(5): 430-446.
    6. Yasargil MG, Kadri PA, Yasargil DC. Microsurgery for malignant gliomas. J Neurooncol, 2004, 69(1-3): 67-81.
    7. Jeon JY, An JH, Kim SU, Park HG, Lee MA. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med, 2008, 40(1): 84-91.
    8. Heese O, Disko A, Zirkel D, Westphal M, Lamszus K. Neural stem cell migration toward gliomas in vitro. Neuro Oncol, 2005, 7(4): 476-484.
    9. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000, 97(23): 12846-12851.
    10. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther, 2008, 15(10): 730-738.
    11. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11): 2739-2749.
    12. Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol, 2007, 137(6): 491-502.
    13. Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H, Hamada T, Kato Y. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev, 2007, 16(1): 119-129.
    14. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, Aboody K, Padovan C, Straube A, Tonn JC, Goldbrunner R. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). ExpNeurol, 2006, 199(2): 301-310.
    15. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2): 419-427.
    16. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7): 1737-1745.
    17. Bao PH, Wang M, Su J, Liu MY, Zhang HX. [Tropism of bone marrow mesenchymal stem cells in neurogenic differentiation for C6 conditioned medium and SDF-1alpha.]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2009, 25(9): 794-797.
    18. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643-2645.
    19. Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg, 2008, 247(2): 310-314.
    20. Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR. Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol, 1998, 26(9): 885-894.
    21. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 2008, 26(6): 1575-1586.
    22. Qian LW, Mizumoto K, Maehara N, Ohuchida K, Inadome N, Saimura M, Nagai E, Matsumoto K, Nakamura T, Tanaka M. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasionvia HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett, 2003, 190(1): 105-112.
    23. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3): 405-414.
    24. Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol, 2009, 247(4): 503-514.
    25. Tamura S, Kato T, Berho M, Misiakos EP, O'Brien C, Reddy KR, Nery JR, Burke GW, Schiff ER, Miller J, Tzakis AG. Impact of histological grade of hepatocellular carcinoma on the outcome of liver transplantation. Arch Surg, 2001, 136(1): 25-30; discussion 31.
    26. Zicha D, Dunn GA, Brown AF. A new direct-viewing chemotaxis chamber. J Cell Sci, 1991, 99 ( Pt 4): 769-775.
    27. Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem, 2005, 280(5): 3541-3547.
    28. Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J Cell Biol, 1999, 147(3): 577-588.
    29. Oishi K, Itamoto T, Amano H, Fukuda S, Ohdan H, Tashiro H, Shimamoto F, Asahara T. Clinicopathologic features of poorly differentiated hepatocellular carcinoma. J Surg Oncol, 2007, 95(4): 311-316.
    30. Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res, 1999, 253(1): 239-254.
    31. Cantley LC. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573): 1655-1657.
    32. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats.Stroke, 2001, 32(4): 1005-1011.
    33. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport, 2000, 11(13): 3001-3005.
    34. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett, 2001, 316(2): 67-70.
    35. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang F. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005, 65(8): 3307-3318.
    36. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 2006, 24(4): 1030-1041.
    37. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia, 2003, 42(2): 139-148.
    38. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med, 2006, 7(1): 19-24.
    39. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 2006, 24(5): 1254-1264.
    40. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood, 2005, 106(6): 1901-1910.
    41. Fiedler J, Etzel N, Brenner RE. To go or not to go: Migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem, 2004,93(5): 990-998.
    42. Schmidt A, Ladage D, Schinkothe T, Klausmann U, Ulrichs C, Klinz FJ, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger RH, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750-1758.
    43. Stephens P, Hiscox S, Cook H, Jiang WG, Zhiquiang W, Thomas DW. Phenotypic variation in the production of bioactive hepatocyte growth factor/scatter factor by oral mucosal and skin fibroblasts. Wound Repair Regen, 2001, 9(1): 34-43.
    44. Matsumoto K, Date K, Ohmichi H, Nakamura T. Hepatocyte growth factor in lung morphogenesis and tumor invasion: role as a mediator in epithelium-mesenchyme and tumor-stroma interactions. Cancer Chemother Pharmacol, 1996, 38 Suppl: S42-47.
    45. Jeffers M, Rong S, Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med, 1996, 74(9): 505-513.
    46. Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A, Okada S, Nakamura T. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood, 1997, 89(5): 1560-1565.
    47. Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ. A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci, 2004, 117(Pt 1): 93-103.
    48. Zhang H, Vutskits L, Pepper MS, Kiss JZ. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol, 2003, 163(6): 1375-1384.
    49. Monypenny J, Zicha D, Higashida C, Oceguera-Yanez F, Narumiya S, Watanabe N. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis. Mol Cell Biol, 2009, 29(10): 2730-2747.
    50. Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells, 2008, 26(12): 3139-3149.
    51. Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC. Regulation ofCXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 2007, 92(7): 897-904.
    52. Uchida K, Urabe K, Naruse K, Ujihira M, Mabuchi K, Itoman M. Comparison of the cytokine-induced migratory response between primary and subcultured populations of rat mesenchymal bone marrow cells. J Orthop Sci, 2007, 12(5): 484-492.
    53. Linseman DA, Loucks FA. Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci, 2008, 13: 657-676.
    54. Cernuda-Morollon E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res, 2006, 98(6): 757-767.
    55. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell, 1996, 84(3): 359-369.
    56. Zheng H, Fu G, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol, 2007, 50(3): 274-280.
    57. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis, 2004, 9(6): 667-676.
    58. Edwards LA, Thiessen B, Dragowska WH, Daynard T, Bally MB, Dedhar S. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene, 2005, 24(22): 3596-3605.
    59. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 2005, 9(1): 59-71.
    60. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell, 2000, 11(5): 1709-1725.
    1. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K. Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun, 1999, 262(1): 1-6.
    2.孙兴会,朱云松. Rac的研究进展.生命的化学, 2002, 22(1): 24-26.
    3. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 1992, 70(3): 401-410.
    4. Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A. Bcr encodes a GTPase-activating protein for p21rac. Nature, 1991, 351(6325): 400-402.
    5. Hall A. Rho GTPases and the actin cytoskeleton. Science, 1998, 279(5350): 509-514.
    6. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 2005, 21: 247-269.
    7. Reibel L, Dorseuil O, Stancou R, Bertoglio J, Gacon G. A hemopoietic specific gene encoding a small GTP binding protein is overexpressed during T cell activation. Biochem Biophys Res Commun, 1991, 175(2): 451-458.
    8. Bolis A, Corbetta S, Cioce A, de Curtis I. Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur J Neurosci, 2003, 18(9): 2417-2424.
    9. Bernet MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 1994, 35(4): 483-489.
    10. Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A, Lemoine NR. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene, 2001, 20(50): 7437-7446.
    11. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E,Kim SU, Barish ME, Aboody KS, Glackin CA. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells, 2008, 26(6): 1575-1586.
    12. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature, 2002, 420(6916): 629-635.
    13. Narumiya S. The small GTPase Rho: cellular functions and signal transduction. J Biochem, 1996, 120(2): 215-228.
    14. Ridley AJ. Rho GTPases and cell migration. J Cell Sci, 2001, 114(Pt 15): 2713-2722.
    15. Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem, 1999, 68: 459-486.
    16. Monypenny J, Zicha D, Higashida C, Oceguera-Yanez F, Narumiya S, Watanabe N. Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis. Mol Cell Biol, 2009, 29(10): 2730-2747.
    17. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol, 2002, 22(18): 6582-6591.
    18. Benard V, Bohl BP, Bokoch GM. Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem, 1999, 274(19): 13198-13204.
    19. Jaffer ZM, Chernoff J. p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol, 2002, 34(7): 713-717.
    20. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. Embo J, 2005, 24(3): 473-486.
    21. Nishiya N, Kiosses WB, Han J, Ginsberg MH. An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge ofmigrating cells. Nat Cell Biol, 2005, 7(4): 343-352.
    22. Kumar R, Vadlamudi RK. Emerging functions of p21-activated kinases in human cancer cells. J Cell Physiol, 2002, 193(2): 133-144.
    23. Vicente-Manzanares M, Webb DJ, Horwitz AR. Cell migration at a glance. J Cell Sci, 2005, 118(Pt 21): 4917-4919.
    24. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol, 1999, 144(6): 1235-1244.
    1. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther, 2008, 15(10): 730-738.
    2. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11): 2739-2749.
    3. Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol, 2007, 137(6): 491-502.
    4. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J,Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 2005, 65(8): 3307-3318.
    5. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells, 2007, 25(11): 2896-2902.
    6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317.
    7. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966, 16(3): 381-390.
    8. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976, 4(5): 267-274.
    9. Rosenbaum AJ, Grande DA, Dines JS. The use of mesenchymal stem cells in tissue engineering: A global assessment. Organogenesis, 2008, 4(1): 23-27.
    10. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G. Isolation of renal progenitor cells from adult human kidney. Am J Pathol, 2005, 166(2): 545-555.
    11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    12. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol, 2004, 36(4): 568-584.
    13. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG. Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med, 1999, 10(2): 165-181.
    14. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair bytransdifferentiation into multiple skin cell type. J Immunol, 2008, 180(4): 2581-2587.
    15. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370.
    16. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005, 106(2): 756-763.
    17. Behr L, Hekmati M, Lucchini A, Houcinet K, Faussat AM, Borenstein N, Noel LH, Lelievre-Pegorier M, Laborde K. Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif, 2009, 42(3): 284-297.
    18. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A, 2003, 100(14): 8407-8411.
    19. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell, 1991, 67(6): 1033-1036.
    20. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 1994, 76(2): 301-314.
    21. Chute JP. Stem cell homing. Curr Opin Hematol, 2006, 13(6): 399-406.
    22. Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, Baggiolini M, Sykes BD. Structure-activity relationships of chemokines. J Leukoc Biol, 1995, 57(5): 703-711.
    23. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol, 2004, 4(5): 360-370.
    24. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol, 2001, 2(2): 123-128.
    25. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE,Fairbairn LJ, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643-2645.
    26. Von Luttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C, Djafarzadeh R, Huss R, Nelson PJ. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev, 2005, 14(3): 329-336.
    27. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 2004, 22(3): 415-427.
    28. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004, 110(21): 3300-3305.
    29. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med, 2006, 7(1): 19-24.
    30. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 2002, 7(2): 113-117.
    31. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O'Brien T, Kerin MJ. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res, 2007, 13(17): 5020-5027.
    32. Wang L, Li Y, Chen J, Gautam SC, Zhang Z, Lu M, Chopp M. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol, 2002, 30(7): 831-836.
    33. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P,Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7): 1737-1745.
    34. Baer PC, Schubert R, Bereiter-Hahn J, Plosser M, Geiger H. Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism. Eur J Cell Biol, 2009, 88(5): 273-283.
    35. Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg, 2008, 247(2): 310-314.
    36. Vargas GA, Hoeflich A, Jehle PM. Hepatocyte growth factor in renal failure: promise and reality. Kidney Int, 2000, 57(4): 1426-1436.
    37. Liu Y. Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens, 2002, 11(1): 23-30.
    38. Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3): 405-414.
    39. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood), 2001, 226(6): 507-520.
    40. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12): 3938-3944.
    41. Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int, 2007, 72(4): 430-441.
    42. De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissueinhibitor of metalloproteinase-3. Haematologica, 2007, 92(4): 440-449.
    43. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood, 2007, 109(9): 4055-4063.
    44. Neth P, Ciccarella M, Egea V, Hoelters J, Jochum M, Ries C. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells, 2006, 24(8): 1892-1903.
    45. Gao H, Priebe W, Glod J, Banerjee D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells, 2009, 27(4): 857-865.
    46. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17(1): 160-170.
    47. Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 2007, 92(7): 897-904.
    48. Annabi B, Lee YT, Turcotte S, Naud E, Desrosiers RR, Champagne M, Eliopoulos N, Galipeau J, Beliveau R. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells, 2003, 21(3): 337-347.
    49. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32(4): 1005-1011.
    50. Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM, Penn MS. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 2007, 25(1): 245-251.
    51. Wu J, Sun Z, Sun HS, Weisel RD, Keating A, Li ZH, Feng ZP, Li RK. Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant, 2008, 16(10): 993-1005.
    52. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am, 2004, 86-A(7): 1541-1558.
    53. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 2003, 108(7): 863-868.
    54. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J, 2006, 27(9): 1114-1122.
    55. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 2008, 39(5): 1569-1574.
    56. McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, Li Y, Chopp M, Dulchavsky SA, Gautam SC. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen, 2006, 14(4): 471-478.
    57. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells, 2008, 26(3): 831-841.
    58. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lutzow K, Lendlein A, Stamm C, Li RK, Steinhoff G. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 2007, 25(8): 2118-2127.
    59. Brenner S, Whiting-Theobald N, Kawai T, Linton GF, Rudikoff AG, Choi U, Ryser MF, Murphy PM, Sechler JM, Malech HL. CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells, 2004, 22(7): 1128-1133.
    60. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG,Kong D. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther, 2008, 16(3): 571-579.
    61. Zhang D, Fan GC, Zhou X, Zhao T, Pasha Z, Xu M, Zhu Y, Ashraf M, Wang Y. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol, 2008, 44(2): 281-292.
    62. Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. Faseb J, 2007, 21(14): 3917-3927.
    63. Ko IK, Kean TJ, Dennis JE. Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials, 2009, 30(22): 3702-3710.
    64. Sarkar D, Vemula PK, Teo GS, Spelke D, Karnik R, Wee le Y, Karp JM. Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug Chem, 2008, 19(11): 2105-2109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700