用户名: 密码: 验证码:
聚酰亚胺基超疏水涂层的制备及其润湿性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超疏水性表面是指与水的接触角大于150°、滚落角小于10o的表面,由于它具有许多独特的表面性能,在防水、防雾、防雪、防腐蚀和自清洁等领域具有潜在的应用价值。但由于现有超疏水技术大多工艺复杂、无法大面积制备超疏水表面,同时所制备的超疏水表面的机械性能较差,极大地制约了超疏水表面在实际生产中的广泛应用。开发低成本、易实现规模化应用、并能提高机械性能的超疏水表面制备技术受到了越来越多的关注。
     本文开发了两种聚酰亚胺基超疏水涂层的制备工艺并对其表面润湿性能进行了研究:
     (1)利用聚酰胺酸涂料作为涂层基底材料,通过银离子交换和热处理技术在基底涂层表面构筑了具有孔洞状结构的纳米银层,在用低表面能的含氟癸基硫醇进行疏水改性后,获得了纳米银修饰的聚酰亚胺超疏水涂层。该超疏水涂层的表面粗糙度和静态接触角均随着热处理温度的升高而增大,而滚落角随着热处理温度的升高而减小;涂层表面的疏水性能随着离子交换溶剂极性和AgNO_3溶液浓度的增大而提高;同时涂层的疏水性也随离子交换时间延长而提高。该制备工艺的优化条件为:热处理温度大于350oC ;最佳离子交换用溶剂为水;优化离子子交换用AgNO_3浓度为0.1M;优化离子交换时间为2小时。
     将纳米银修饰聚酰亚胺超疏水表面涂层应用在空调散热铝板表面,研究了超疏水表面的防结霜性能。结果表明,超疏水表面改性能显著延缓霜层在铝板表面的生长;防结霜性能随着表面疏水性能的增强而提高;霜层在普通铝板和疏水铝板表面上具有不同的生长过程和化霜过程。模拟能耗计算表明,用超疏水改性散热铝板表面能显著降低空调在制热时的能耗,提高空调的工作效率,在设计环保节能空调领域具有较好的应用前景。
     (2)利用商业化的疏水SiO_2纳米粒子和聚酰胺酸涂料一步共混制备聚酰亚胺/SiO_2复合超疏水涂层。涂层的疏水性随着疏水SiO_2纳米粒子含量的增加而增强;当纳米粒子质量含量超过32.5%时,涂层表面接触角大于154o、滚落角小于6o。制备的超疏水表面具有良好的耐溶剂性能、耐刮伤性能和自清洁性能.该工艺的工艺过程简单、易实现规模化生产。
Superhydrophobic surfaces have very high water contact angles (CAs), particularly higher than 150°, and low water sliding angles (SAs) (less than 10o) . Because of theris special surface properties, these surfaces can be potentially applied in various fields such as water-proof materials, anti-fogging windows, anti-corrosion and self-cleaning coatings. However, technical problems such as complex fabricating processes, small areas and poor mechanical properties of the abtained superhydrophobic surfaces, have made these surfaces difficult to be applied. Therefore, new fabricating technologies aiming to reduce the cost, easily to be industrialized, and to improve mechanical properties of superhydrophobic surfaces, have attracted much attention.
     This dissertation concentrated on developing two fabrication technologies of polyimide-based superhydrophobic coatings, and their wettabilities were systematically studied.
     (1) Silver nano-particles were generated on polyamic acid film by ion exchange reaction with silver ion and subsequent thermal treatment. After modified with 1H,1H,2H,2H-perfluoro-1-decanethiol, superhydrophobic properties were obtained. Both of surface roughness and CAs of the superhydrophobic surface coating increased as the temperature of thermal treament increased, while SAs of the coatings decreased. Increasing the polarity of solvents, the concentration of AgNO_3 solution and the ion-exchange time can enhance the hydrophobicity of the surface coatings. We found the optimized conditions to achieve the superhydrophobic surface coatings as follows: the thermal treatment temperature should be over 350oC, the solvent for ion-exchange should be water, the concentration of AgNO_3 solution for ion-exchange should be larger than 0.1M, and ion-exchange time 2 hours. This method could be applied to fabricate superhydrophobic surfaces with large areas.
     The anti-frosting property of superhydrophobic surfaces were investigated after the polyimide-based superhydrophobic surfaces with silver nano-particles coated on heat-exchanging aluminum (Al) plates. The results indicated the frosting growth process on superhydrophobically modified Al paltes could be greatly postponed compared with bare Al plates, and the anti-frosting property of modified Al plates was improved with the increase of hydrophobicity. The results also showed that frosting-processes and defrosting-processes on the superhydrophobically modified Al plates are quite different from those on bare Al plates. Simulated calculation of energy consumption during frosting-defrosting cycles confirmed that superhydrophobic coatings could save the energy consumed during heating process and improve the efficiency of air-conditioner. Therefore, they can be potentially used to save energy consumption in air-conditioner.
     (2) Polyimide/SiO_2 composite superhydrophobic coatings were prepared by simply blend polyamic acid solution with commercial hydrophobic SiO_2 nano-particles. The hydrophobicity of the coatings was improved with the increase of weight ratio of hydrophobic SiO_2 nano-particles in the mixed coatings. Superhydrophobic surfaces with CA higher than 154o and SA lower than 6o were prepared when more than 32.5% wt of hydrophobic SiO_2 nano-particles were added. The as-prepared coatings showed good solvent durabilitiy, good abrasion resistance, as well as perfect self-cleaning property. The fabricating process is very simple and convenient for industrialization.
引文
[1] Nakajima A., Hashimoto K., Watanabe T., Recent Studies on Superhydrophobic Films, Monatsh. Chem., 2001, 132, 31-41
    [2] Gao X., Jiang L., Water-repellent Legs of Water Striders, Nature, 2004, 432, 36-36
    [3] Chen T H., Chuang Y J., Chieng C C., Tseng F G., A Wettability Switchable Surface by Microscale Surface Morphology Change, J. Micromech. Microeng., 2007, 17, 489-495
    [4] Gras S L., Mahmud T., Rosengarten G., Mitchell A., Kalantarzadeh K., Intelligent Control of Surface Hydrophobicity, Chem. Phys. Chem., 2007, 8, 2036-2050
    [5]赵燕,具有特殊润湿性能的聚合物基界面材料的构筑:表面化学组成与微观几何结构,[学位论文],上海,上海交通大学,2008
    [6] McHale G., Shirtcliffe N J., Newton M I., Contact-angle Hysteresis on Super-hydrophobic Surfaces, Langmuir, 2004, 20, 10146-10149
    [7] Marmur A., The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, 2004, 20, 3517-3519
    [8] Wenzel R N., Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, 988-994
    [9] Cassie A B D., Baxter S., Wettability of Porous Surfaces, Trans. Faraday. Soc., 1944, 40, 546-551
    [10] Jopp J., Grull H., Yerushalmi R., Wetting Behavior of Water Droplets on Hydrophobic Micro- textures of Comparable Size, Langmuir, 2004, 20, 10015-10019
    [11] Bico J., Tordeux C., QuéréD., Wetting of Textured Surfaces, Colloids. Surf., 2002, 206, 41-46
    [12] Chen W., Fadeev A Y., McCarthy T J., et al., Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir, 1999, 15, 3395-3399
    [13] Oner D., McCarthy T J., Ultrahydrophobic Surfaces: Effects of Topography Length Scales on Wettability, Langmuir, 2000, 16, 7777-7782
    [14] Minko S., Müller M., Motornov M., Two Level Structured Self-adaptive Surfaces With Reversibly Tunable Properties, J. Am. Chem. Soc., 2003, 125, 3896-3900
    [15] Jin M.H., Feng X J., Xi J M., et al., Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force, Macromol. Rapid. Commun., 2005, 26, 1805-1809
    [16] Fresnais J., Chapel J P., Poncin-Epaillard F., Synthesis of Transparent Superhydrophobic Poly- ethylene Surfaces, Surf. Coat. Technol., 2006, 200, 5296-5305
    [17] Kim S H., Kim J H., Kang B K., Uhm H S., Superhydrophobic CFx Coating via In-Line Atmo- spheric RF Plasma of He?CF4?H2, Langmuir, 2005, 21, 12213-12217
    [18] Erbil H Y., Demirel A L., Avci Y., Mert O., Transformation of a Simple Plastic into a Super- hydrophobic Surface, Science, 2003, 299: 1377-1380
    [19] Lu X Y., Zhang C C., Han Y C., Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior, Macromol. Rapid Commun., 2004, 25, 1606-1610
    [20] Li X., Chen G., Ma Y M., Preparation of A Super-hydrophobic Poly (vinyl chloride) Surface via Solvent–nonsolvent Coating, Polymer, 2006, 47, 506-509
    [21] Peng M., Li H., Wu L., et al., Porous Poly (Vinylidene Fluoride) Membrane with Highly Hydro- phobic Surface, J. Appl. Polym. Sci., 2005, 98, 1358-1363
    [22] Ma Y., Cao X Y., Feng X J., et al., Fabrication of Super-hydrophobic Film from PMMA with Intrinsic Water Contact Angle below 90 (degree), Polymer, 2007, 48, 7455-7460
    [23] Zhao N., Xie Q D., Xu J., et al., Superhydrophobic Surface from Vapor-induced Phase Separation of Copolymer Micellar Solution, Macromolecules, 2005, 38, 8996-8999
    [24] Xie Q., Fan G.., Zhao N., et al., Facile Creation of A Bionic Super-hydrophobic Block Copolymer Surface, Adv. Mater., 2004, 16, 1830-1833
    [25] Zhao N., Xu J., Xie Q., et al., Fabrication of Biomimetic Superhydrophobic Coating with A Micro- nano-binary Structure, Macromol. Rapid Commun., 2005, 26, 1075-1080
    [26] Vogelaar L., Lammertink R G H., Wessling M., Superhydrophobic Surfaces Having Two-fold Adjustable Roughness Prepared in A Single Step, Langmuir, 2006, 22, 3125-3130
    [27] Feng L., Li S., Li H., et al., Super-hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew. Chem. Int. Ed., 2002, 41, 1221-1223
    [28] Feng L., Yang Z., Zhai J., et al., Superhydrophobicity of Nanostructured Carbon Films in A Wide Rang of pH Values, Angew. Chem. Int. Ed., 2003, 42, 4217-4220
    [29] Feng L., Song Y., Zhai J., et al., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angew. Chem. Int. Ed., 2003, 42, 800-802
    [30] Jin M., Feng X., Feng L., et al., Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force, Adv. Mater., 2005, 17, 1977-1981
    [31]金美花,冯琳,封心建,翟锦,江雷,白玉白,李铁津,阵列聚合物纳米柱膜的超疏水性研究,高等学校化学学报, 2004, 25, 1375-1377
    [32] Sun M., Luo C., Xu L., et al., Artificial Lotus Leaf by Nanocasting, Langmuir, 2005, 21, 8978-8981
    [33] Gu Z Z., Uetsuka H., Takahashi K., et a.l, Structural Color and The Lotus Effect, Angew. Chem. Int. Ed., 2003, 42, 894-897
    [34] Lee W., Jin M K., Yoo W C., Lee J K., Nanostructuring of A Polymeric Substrate With Well- defined Nanometer-scale Topography and Tailored Surface Wettability, Langmuir, 2004, 20, 7665-7669
    [35] Zhang J L., Li J., Han Y C., Superhydrophobic PTFE surfaces by extension, Macromol. Rapid. Commun., 2004,25,1105
    [36] Zhang J L., Lu X Y., Huang W H., Han Y C., Reversible Superhydrophobicity to Super- hydrophilicity Transition by Extending and Unloading an Elastic Polyamide Film, Macromol.Rapid.Commun., 2005, 26, 477-480
    [37] Jiang L., Zhao Y., Zhai J., A Lotus-leaf-like Superhydrophobic Surface: A Porous Microsphere/ Nano Fiber Composite Film Prepared by Electrohydrodynamics, Angew. Chem. Int. Ed., 2004, 43, 4338-4341
    [38] Zhu Y., Zhang J., Zheng Y., Huang Z., Feng L., Jiang L., Stable Superhydrophobic and Conductive Polyaniline/polystyrene Films for Corrosive Environments, Adv. Funct. Mater., 2006, 16, 568-574
    [39] Zhu Y., Zhang J., Zhai J.,et al, Multifunctional Carbon Nanofibers with Conductive, Magnetic and Superhydrophobic Properties, ChemPhysChem., 2006, 7, 336-341
    [40] Acatay K., Simsek E., Menceloglu Y Z., et al., Angew. Chem. Int. Ed., 2004, 43, 5210-5213
    [41] Zheng J., He A., Li J., Xu J., Han C C., Studies on The Controlled Morphology and Wettability of Polystyrene Surfaces by Electrospinning or Electrospraying, Polymer, 2006, 47, 7095-7102
    [42] Zhu M F., Zou W., Yu H., et al., Superhydrophobic Surface Directly Created by Electrospinning Based on Hydrophilic Material, J. Mater. Sci., 2006, 41, 3793-3797
    [43] Singh A., Steely L., Allcock H. R., Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers, Langmuir, 2005, 21, 11604-11607
    [44] Ma M., Hill R M., Lowery J L.,et al., Electronspun Poly(styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity, Langmuir, 2005, 21, 5549-5554
    [45] Jisr R M., Rmaile H H., Schlenoff J B., Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes, Angew. Chem. Int. Ed., 2005, 44: 782-785
    [46] Zhai L., Cebeci F., Cohen R E., et al., Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers, Nano Lett., 2004, 4, 1349-1353
    [47] Han J T., Zheng Y., Cho K., et al., J. Phys. Chem., B, 2005, 109, 20773-20778
    [48] Lim H S., Han J T., Kwak D., et al., Photoreversibly Switchable Superhydrophobic Surface withErasable and Rewritable Pattern, J.Am.Chem.Soc., 2006, 128, 14458
    [49] Jiang W., Wang G., He Y., et al., Photoswitched Wettability on An Electrostatic Self- assembly Azobenzene Monolayer, Chem. Commun., 2005, 28, 3550-3552
    [50] Shang H M., Wang Y., Limmer S J.,et al., Optically Transparent Superhydrophobic Silica-based Films, Thin Solid Films, 2005, 472, 37-43
    [51]郭志光,周峰,刘维民,溶胶凝胶法制备仿生超疏水性薄膜,化学学报,2006, 64, 761-766
    [52] Hikita M., Tanaka K., Nakamura T., et al., Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl Groups, Langmuir, 2005, 21, 7299-7302
    [53] Han J T., Lee D H., Ryu C Y., Cho K., Fabrication of Superhydrophobic Surface from A Supramolecular Organosilane with Quadruple Hydrogen Bonding, J. Am. Chem. Soc., 2004, 126, 4796-4797
    [54] Rao A V., Kulkarni M M., Amalnerkar D P., Seth T., Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor, J. Non-Cryst. Solids., 2003, 330, 187-195
    [55] Shirtcliffe N J., McHale G., Perry C C., Intrinsically Superhydrophobic Organosilica Sol-Gel Foams, Langmuir, 2003, 19, 5626-5631
    [56] Wang S., Feng L., Jiang L., One-step Solution-immersion Process for The Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater., 2006, 18, 767-770
    [57] Zhang X., Shi F., Yu X., et al., Polyelectrolyte Multilayer as Matrix for Electrochemical De- position of Gold Clusters: Toward Super-hydrophobic Surface, J. Am. Chem. Soc., 2004, 126, 3064-3065
    [58] Zhao N., Shi F., Wang Z., Zhang X., Combining Layer-by-layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces, Langmuir, 2005, 21, 4713-4716
    [59] Zhang H., Lamb R., Lewis J., Engineering nanoscale roughness on hydrophobic surface-pre- liminary assessment of fouling behaviour, Science and Technology of Advanced Materials, 2005, 6, 236-239
    [60] Nakajima A., Hashimoto K., Watanabe T., Transparent Superhydrophobic Thin Films with Self- Cleaning Properties, Langmuir, 2000, 16, 7044-7047
    [61] Yoshida N., Takeuchi M., Okura T., Monma H., Super-hydrophobic Photocatalytic Coatings Utili- zing Apatite-based Photocatalyst, Thin Solid Films, 2006, 502, 108-111
    [62] Liu H., Feng L., Zhai J., et al., Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity, Langmuir, 2004, 20, 5659-5661.
    [63] Wang S T., Song Y L,, Jiang L., Microscale and Nanoscale Hierarchical Structured Mesh Films with Superhydrophobic and Superoleophilic Properties Induced by Long-chain Fatty Acids, Nanotechnology, 2007, 18, 1-5
    [64] Li M., Xu J H., Lu Q H., Creating Superhydrophobic Surfaces with Flowery Structures on Nickel Substrates Through A Wet-chemical-process, J. Mater. Chem., 2007, 17, 4772–4776
    [65] Ma M., Hill R M., Lowery J L., et al., Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity, Langmuir, 2005, 21, 5549-5554
    [66] Ma M., Mao Y., Gupta M., et al., Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition, Macromolecules, 2005, 38, 9742-9748
    [67] Pilotek S., Schmidt H K., Wettability of Microstructured Hydrophobic Sol-Gel Coatings, J. Sol–Gel. Sci. Technol., 2003, 26 ,789-792
    [68] Shang H M., Wang Y., Takahashi K., Gao G Z., Superhydrophobic Films of Electrospun Fibers with Multiple-Scale Surface Morphology, J. Mater. Sci., 2005, 40 ,3587-3596
    [69] Tadanaga K., Kitamuro K., Matsuda A., Minami T., Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol-Gel Method, J. Sol–Gel. Sci.Technol. 2003,26,705-708
    [70] Li Z X., Xing Y J., Dai J J., Superhydrophobic Surfaces Prepared from Water Glass and Non- fluorinated Alkylsilane on Cotton Substrates, Applied Surface Science, 2008, 254, 2131-2135
    [71] Satoh K., Nakazumi H., Morita M., Preparation of Super-Water-Repellent Fluorinated Inorganic- Organic Coating Films on Nylon 66 by the Sol-Gel Method Using Microphase Separation, J. Sol–Gel Sci. Technol., 2003, 27,327-332
    [72] Daoud W A., Xin J H., Tao X M., Superhydrophobic Silica Nanocomposite Coating by A Low- temperature Process, J. Am. Ceram. Soc., 2004, 87 ,1782–1784
    [73] Xue C H., Jia S T., Zhang J., Tian L Q., Preparation of Superhydrophobic Surfaces on Cotton Textiles, Sci. Technol. Adv., Mater. 2008, 9, 1-7
    [74] Yua M H., Gua G T., Menga W D., Qing F L., Superhydrophobic Cotton Fabric Coating Based on A Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent, Applied Surface Science, 2007, 253, 3669-3673
    [75] Watanabe K., Yanuar., Udagawa H., Drag Reduction of Newtonian Fluid in A Circular Pipe with A Highly Water-repellent Wall, J. Fluid Mech., 1999, 381, 225-238
    [76] Kim J., Kim C J., Proceedings of the IEEE Conference MEMS, LasVegas, NV, IEEE, New York, 2002, 479.
    [77] Ou J., Rothstein J P., Direct Velocity Measurements of The Flow Past Drag-reducing Ultra- hydrophobic Surfaces, Phys. Fluids., 2005, 17, 103606:1-10
    [78] Fukagata K., Kasagi N., Koumoutsakos P., A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces, Phys. Fluids., 2006,18, 051703
    [79] Shi F., Niu J., Liu J., et al., Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders, Adv. Mater., 2007, 19, 2257-2261
    [80] Zhang F Z., Zhao L L., Chen H Y., et al., Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angew. Chem. Int. Ed., 2008, 47, 2466-2469
    [81] Yabu H., Shimomura M., Single-step Fabrication of Transparent Superhydrophobic Porous Poly- mer Films, Chem. Mater., 2005, 17, 5231-5234
    [82] Artus G R J., Jung S., Zimmermann J., et al., Silicone Nanofilaments and Their Application as Superhydrophobic Coatings, Adv. Mater., 2006, 18, 2758-2762
    [83] Hong X., Gao X., Jiang L., Application of Superhydrophobic Surface With High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet, J. Am. Chem. Soc., 2007, 129, 1478-1479
    [84] Wang Y, Sims C E, Marc P, et al., Micropatterning of Living Cells on a Heterogeneously Wetted Surface, Langmuir, 2006, 22, 8257-8262
    [85] Sun T., Tan H., Han D., et al., No Platelet Can Adhere - Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces, Small, 2005, 1, 959-963
    [86] Toesa G J, Muiswinkel K W, Oeverenc W, et al., Superhydrophobic Modification Fails to Improve the Performance of Small Diameter Expanded Polytetrafluoroethylene Vascular Grafts, Biomaterials, 2002, 23, 255-262
    [87] Li W Z., Wang X, Chen Z W., Waje M., Yan Y., Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel Cell, Langmuir, 2005, 21,9386-9389
    [1] Lafuma A.., Quere D., Superhydrophobic states, Nat. Mater., 2003, 2, 457-460
    [2] Doms M., Feindt H., Kuipers W J., et al., Hydrophobic Coatings for MEMS Applications, J. Micromech. Microeng., 2008, 18, 1-12
    [3] Tang L M., Li Y., Wu X M., et al., Synthesis and Properties of Fluoropolyacrylate Coatings, Polym.Adv. Technol., 2004, 15, 39-42
    [4] Wang H., Tang L M., Wu X M., et al., Fabrication and aAnti-frosting Performance of Super Hydrophobic Coating Based on Modified Nano-sized Calcium Carbonate and Ordinary Polyacrylate, Applied Surface Science, 2007, 253, 8818-8824
    [5] Blossey R., Self-cleaning Surfaces– Virtual Realities, Nat. Mater., 2003, 2, 301-306
    [6] Howarter J A., Youngblood J P., Self-Cleaning and Anti-Fog Surfaces via Stimuli-Responsive Polymer Brushes, Adv. Mater., 2007, 19, 3838-3843
    [7] Feng X J., Jiang L., Design and Creation of Superwetting/Antiwetting Surfaces., Adv. Mater. 2006, 18, 3063-3078
    [8]曲爱兰,文秀芳,皮丕辉等,超疏水涂膜的研究进展,化学进展,2006,18,1434-1438
    [9] Lau K K S., Bico J., Gleason K K., Superhydrophobic Carbon Nanotube Forests, Nano Lett., 2003, 3, 1701-1705
    [10] Vogelaar L., Lammertink R G H., Wessling M., Superhydrophobic Surfaces Having Two-fold Adjustable Roughness Prepared in A Single Step, Langmuir, 2006, 22, 3125-3130
    [11] Erbil H Y., Demirel A L., Avci Y., Mert O., Transformation of A Simple Plastic Into A Super-hydrophobic Surface, Science, 2003, 299, 1377-1380
    [12] Lu X Y., Zhang C C., Han Y C., Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior, Macromol. Rapid. Commun., 2004, 25, 1606-1610
    [13] Li X., Chen G., Ma Y M., Preparation of A Super-hydrophobic Poly(vinyl chloride) Surface via Solvent–nonsolvent Coating, Polymer, 2006, 47, 506-509
    [14] Peng M., Li H., Wu L, et al., Porous Poly(vinylidene fluoride) Membrane with Highly Hydrophobic Surface, J. Appl. Polym. Sci., 2005, 98, 1358-1363
    [15] Lee W., Jin M Y., Yoo W C., Lee J K., Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability, Langmuir, 2004, 20, 7665-7669
    [16] Zhao N., Xie Q D., Xu J., et al., One-step Coating of Fluoro-containing Silica Nanoparticles for Universal Generation of Surface Superhydrophobicity, Macromeolecules, 2005, 38, 8996-8999
    [17] Xie Q D., Xu J., Han C C., Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure, Adv. Mater., 2004, 16, 302-305
    [18] Zhao Y., Lu Q H., Chen D S., et al., Superhydrophobic Modification of Polyimide Films Based on Gold-coated Porous Silver Nanostructures and Self-assembled Monolayers, J. Mater. Chem., 2006, 16: 4504-4509
    [19] Laibinis P. E., Whitesides G. M., Allara D. L., et al., Comparison of The Structures and Wetting Properties of Self-assembled Monolayers of n-alkanethiols on The Coinage Metal Surfaces, Copper, Silver, and Gold, J. Am. Chem. Soc., 1991, 113, 7152-7167
    [20] Shirtcliffe N J., McHale G., Newton M I., Perry C C., Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces, Langmuir, 2005, 21, 937-943
    [21] Wenzel R. N., Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, 988-994
    [22] Cassie A B D., Baxter S., Wettability of Porous Surfaces, Trans. Faraday Soc. 1944, 40, 546-551
    [1]王跃河,纳米超疏水技术在制冷领域中的应用研究,家电科技,2006,8,40- 42
    [2] Wu X M., Webb R L., Investigation of The Possibility of Frost Release From A Cold Surface, Exp. Therm. Fluid. Sci., 2001, 24, 151-156
    [3] Ameen F R., Study of Frosting of Heat Pump Evaporators, ASHRAE.Trans., 1993, V99, Part1
    [4]姜益强,姚杨,马景良.空气源热泵结霜除霜损失系数的计算.暖通空调, 2000, 30(5):24-26
    [5] Okoroafor EU, Newborough M., Minimising Frost Growth on Cold Surfaces Exposed to Humid Air by Means of Crosslinked Hydrophilic Polymeric Coatings, Applied Thermal Enginnering., 2000, 20, 737-758
    [6] Highgate D., Knight C., Probert S D. Anomalous Freezing of Water in Hydrophilic Polymeric Structures, Appl Energy., 1989, 34, 243-259
    [7] Ryu I S., Lee Y B., Ro S T., The Effect of Environmental Variables on Frost Formation on A Horizontal Cylinder, Proc. SERAK., 2000, 104-108
    [8] Shin J., Tikhonov A., Kim C., Experimental Study on Frost Structure on Surfaces With Different Hydrophilicity: Density and Thermal Conductivity, ASME J. Heat Transfer., 2003, 125, 84-94
    [9] Tang L M., Li Y., Wu X M., et al., Synthesis and properties of fluoropolyacrylate coatings, Polym. Adv. Technol., 2004, 15, 39- 42
    [10] Jhee S., Lee K S., Kim W S., Effect of Surface Treatments on The Frosting/defrosting Behavior of A Fin-tube Heat Exchanger, International Journal of Refrigeration., 2002, 25, 1047-1053
    [11] Wang H., Tang L M., Wu X M., et al., Fabrication and Anti-frosting Performance of Super hydrophobic Coating Based on Modified Nano-sized Calcium Carbonate and Ordinary Polyacrylate, Applied Surface Science., 2007, 253, 8818- 8824
    [12] Kondepudi S N., O’Neal D L., Frosting Performance of Tube Fin Heat Exchangers With Wavy and Corrugated Fins, Exp. Therm. Fluid. Sci., 1991, 4, 613-618
    [1] Feng L., Li S., Li H., et al., Super-hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew. Chem. Int. Ed, 2002, 41, 1221-1223
    [2] Feng L., Yang Z., Zhai J., et al., Superhydrophobicity of Nanostructured Carbon Films in a Wide Rang of pH Values, Angew. Chem. Int. Ed, 2003, 42, 4217-4220
    [3] Zhu M F., Zou W., Yu H., et al., Superhydrophobic surface directly created by electrospinning based on hydrophilic materialJ. Mater. Sci., 2006, 41: 3793-3797
    [4] Ma M., Hill R M., Lowery J. L, Fridrikh S. V., Rutledge G. C., Electronspun poly (styrene- block–dimethy lsiloxane) block copolymer fibers exhibiting superhydrophobicity, Langmuir, 2005, 21, 5549-5554
    [5] Erbil H Y., Demirel A.L., Avci Y., Mert O., Transformation of a Simple Plastic into a Superhy-drophobic Surface, Science, 2003, 299: 1377-1380
    [6] Lu X Y., Zhang C C., Han Y C., Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior, Macromol. Rapid Commun., 2004, 25, 1606-1610
    [7] Li X., Chen G., Ma Y M., Preparation of A Super-hydrophobic Poly (vinyl chloride) Surface via Solvent–nonsolvent Coating, Polymer., 2006, 47, 506-509
    [8] Peng M., Li H., Wu L., et al., Porous Poly (Vinylidene Fluoride) Membrane with Highly Hydrophobic Surface, J. Appl. Polym. Sci., 2005, 98, 1358-1363
    [9] Ma Y., Cao X Y., Feng X J., et al., Fabrication of Super-hydrophobic Film from PMMA with Intrinsic Water Contact Angle below 90 (degree), Polymer, 2007, 48, 7455-7460
    [10] Zhao N., Xu J., Xie Q., et al., Fabrication of Biomimetic Superhydrophobic Coating with A Micro-nano-binary Structure, Macromol. Rapid Commun., 2005, 26, 1075-1080
    [11]肖明艳,陈建敏,有机-无机杂化材料研究进展,高分子材料科学与工程,2001,17 (05),6-10
    [12] Wang H., Tang L M., Wu X M., Fabrication and Anti-frosting Performance of SuperHydrophobic Coating Based on Modified Nano-sized Calcium Carbonate and Ordinary Polyacrylate, Applied Surface Science, 2007, 253, 8818–8824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700