用户名: 密码: 验证码:
二维组合声子晶体薄板振动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
楼板、建筑幕墙等的振动控制,尤其是在工业建筑、精密仪器制造结构中的减振隔振意义更为突出。声子晶体结构的弹性波禁带理论为振动控制提出了新的思路,然而,近十年来这方面几乎所有的研究内容都集中在单一声子晶体结构禁带特性方面,对组合声子晶体结构禁带性能的研究几乎还是空白。本文利用有限元方法仿真分析了两种简单的组合声子晶体结构薄板,即二组元/三组元交替组合和分区组合两种声子晶体结构薄板的弯曲振动衰减及振动禁带特性。本文的主要研究内容有:
     通过软件调试和对声子晶体结构薄板的振动仿真,分析验证了有限元软件ANSYS在声子晶体结构振动仿真方面的适用性,并得出这两种组合声子晶体结构薄板都存在弯曲振动禁带,得出了结构纵向周期数对有限结构薄板振动衰减幅度有影响,周期数越多振动衰减越大。
     通过对交替组合声子晶体结构模型的振动仿真,分析了10Hz-2400Hz范围内的振动特性,利用振动传输特性曲线分析得到其振动带隙具有相应的二维二组元、二维三组元声子晶体结构薄板无法比拟的优点。
     还仿真了分区组合声子晶体结构薄板,利用振动传输特性曲线分析得出其振动禁带受3C声子晶体分区部分影响较大。但是,禁带展现比2D3C声子晶体薄板更明显,即振动衰减现象更明显;各禁带宽度也比2D3C声子晶体薄板结构宽。
     并且比较分析两种组合结构振动传输特性曲线的异同,得出在中低频区,交替组合声子晶体结构具有分区组合声子晶体没有的低频、大幅度振动衰减、较宽的衰减频段的优势。
     本文也分析了两种组合结构的振动形态的特点,得出交替组合、分区组合声子晶体结构薄板的振动模态与相应的二维二组元、二维三组元声子晶体结构薄板的振动模态不同,但是与二者有关系,尤其是和二维三组元声子晶体晶胞模态关系明显。
     本文的研究丰富了声子晶体薄板振动带隙理论的研究内容,也为声子晶体的应用提供了理论指导,为板类结构的振动控制提供了新的技术方法。
The vibration control of the floor, building walls and so on, Especially of the industrial structure have more prominent meaning. For vibration control theory, the elastic wave bandgap of phononic crystal structure put forward a new approach. however, over the past 10 years, almost all the research in this area have focused on the single crystal structure out of bandgap properties, and in combination phononic crystal structure bandgap properties is almost blank. Using finite element method we simulate bending vibration attenuation and vibration bandgap properties of the two kinds of simple combination of the two phononic crystal structure plate, that is, the two components/ three components mixed phononic crystal structure of the plate. The main contents are,
     The software debugging and the vibration simulation of the phononic crystal structure of the plate, validate the applicability of the finite element analysis software ANSYS in phononic crystal structure, and that it existe the bending vibration plate Ban-Zone of these two combination of the two phononic crystal structure, and the influence of the vertical structure of the limited number of cycles about vibration attenuation, and more cycle greater attenuation.
     Through model simulation of the alternating combination phononic crystal structure, ranging from 10Hz to 2400Hz, according to the vibration transmission characteristic curve, we get the vibration bandgap of the corresponding two -dimensional three-components and two-dimensional two-components crystal thin plate structure which have incomparable advantages.
     Also simulating of the subareaed phononic crystal structure plate, we get that the vibration gap has the a greater impact on district by 3C phononic crystal part. But the bandgaps are more obvious than that 2D3C phononic crystal plate showed, or it shows more obvious vibration attenuation. And the bandgap are also wider than 2D3C structure’.
     Also comparing the similarities and differences between the two combinat -ions, in the low-frequency, we drawed that alternating combination of phononic crystal structure has the advantage of low-frequency, substantially vibration attenuation, wide-band attenuation than subareaed one.
     This article also analyzed the characteristics of the vibration shaps of the two combination structure. The vibration shapes of the subareaed combination plate and alternating combination plate are different to the corresponding 2D2C and 2D3C structure’vibration shapes, but they are related with the two, and in particular the 2D3C shape has relationed significantly.
     This study has enriched the phononic crystal plate vibration bandgap theory, and provides a theoretical guidance for the application of phononic crystal, also a new way of vibration control technology for the plate.
引文
1景英仁.某大型工业厂房振动控制对策研究.西安建筑科杖大学学位论文. 2007, (5):1~2.
    2冯军和,张敏政,闫维明.多层选煤厂房的受振层楼板振动分析.地震工程与工程振动. 2007, 27(2):99~100.
    3快素兰,张俞之,胡行方.光子晶体的能带结构、潜在应用和制备方法.无机材料学报, 2001, 16(2):193~198.
    4 E. Yablonovitch. Inhibited Spontaneous Emission Insolid-Statephys-ics and Electronics. Physical Review Letters. 1987, 58(20):2059~2062.
    5 S. John. Strong Localization of Photons in Certain Disordered Dielectrisu -per Lattices. Physical Review Letters. 1987, 58(20):2486~2489.
    6 M. M. Sigalas, E. N. Economou. Elastic and Acoustic Wave Ban structure. Journal of Sound and Vibration. 1992, 158(2):377~382.
    7 M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. D. Jafarirouhani. Acoustic Band Structure of Periodic Elastic Composites. Physical Review Letters. 1993, 71(13): 2022~2025.
    8 J. O. Vasseur, B. D. Jafarirouhani, L. Dobrzynski, P. A. Deymier. Complete Acoustic Bandgaps in Periodic Fibre Reinforced Compositmaterials: the Carbon/Epoxy Composite and Some Metallic System. Physical:Condensed Matterials. 1994, (6):8759~8770.
    9 C. Goffaux, J. P. Vigneron. Theoreticaal Study of a Tunable Phononic Band -gap System [J]. Physical Review B. 2001, 64(7):5118.
    10 M. S. Kushwaha, P. Halevt. Ultrawide Band Filter for Noise Control. Applied Physical. 1997, (36):1043~1044.
    11 J. V. Sanche-Perez, D. Caballero, R. M. Sala, C. Rubio, J. S. Dehesa. Sound Attenuation by Two-Dimensional ArrayRigid Cylinders. Physical Review Letters. 1998, (80):5325~5328.
    12 F. Cervera, L. Sanchis, J. V. S. Prez, R.M. Sala, Crubio, F. Mesegure. Refractive Acoustic Devices for Airborne Soun. Physical Review Letters. 2002, 88(2): 023902.
    13 Suxia Yang. Ultrasound Tunneling through 3D Phononic Crystals. Physical Review Letters. 2002, 88(10):104301.
    14 M. M. Sigalas, E. N. Economou. Elastic Waves in Plates with Period Callyplaced Inclusions. Applied Physical. 1994, 75(6):2845~2850.
    15 M. S. Sigalas. Elastic Wave Bandgaps and Defect states in Two-Dimensio -nal composites. Journal of the Acoustical Society of America 1997, 101(3): 1256~1261.
    16 M. M. Sigalas. Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders. Applied Physical. 1998, 85(6):3026~3030.
    17 Fugen Wu, Zhilin Hou, Zhengyou Liu, Youyan Liu. Point Defect States in Two-Dimensional Phononic Crystals. Physical Letters A. 2001, (292): 198~202.
    18 FuGen Wu, Zhengyou Liu, Youyan Liu. Stop Gaps and Single Defect States of Acoustic Waves in Two-Dimensional Lattice of Liquid Cylinders. Physical Letters. 2001, 18(6):785~787.
    19 Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y. Y. Zhu, Zhiyu Yang, C.T.Chan, Ping Sheng. Locally Resonant Sonic Materials. Science. 2000, (289): 1734~1736.
    20 Zhengyou Liu, C. T. Chan, Ping Sheng. ThreeComponent Elasit Wave Band -gap Material. Physical Review B. 2002, 65(16):1651.
    21 M. Kafesaki, R. S. Penciu, E. N. Economou. Air Bubbles in Water: Strongly Mutiple Scattering Medium for Acoustic Waves. Physical Review Letters A. 2000, 84(26):6050~6053.
    22郁殿龙,刘耀宗,邱静,王刚,温激鸿,赵宏刚.一维声子晶体振动特性与仿真.振动与冲击. 2005, (35):92~94
    23华佳,张舒,程建春.中间包层对声子晶体禁带结构的影响. 2005, (51): 253~255.
    24温激鸿.声子晶体研究概述.功能材料. 2003, (4):364~367.
    25温激鸿.声子晶体振动带隙及减振特性研究.国防科学技术人学研究生院学位论文. 2005, (36):61~70.
    26温激鸿,刘耀宗,郁殿龙,王刚,赵宏刚.基于散射单元的声子晶体振动带隙研究.人工晶体学报. 2004, 33(3):258~266.
    27郁殿龙,刘耀宗,王刚,温激鸿,岳静.二维声子晶体薄板的振动特性机械工程学报. 2006, (42):150~154.
    28 R. Martinez.Sala, J. Sancho, F. Meseguer, et al. Sound Attenuation by Sculpture. Nature. 1995, 378(16):241.
    29 J. O. Vasseur, P. A. Deymier, A. Khelif, et al. Phononic Crystal with Low Filling Fraction and Absolute Acoustic Bandgap in the Audible Frequency Range: a Theoretical and Study Experimental. Physical Review E. 2002, 65(5):056608~056609
    30 M. S. Kushwaha, P. Halevi, G. Marinez. Theory of Acoustic Band Structure of Periodic Elastic Composites. Physical Review B. 1994, 49(8):2313~ 2322.
    31 M. Sigalas, M. S. Kushwaha, E. N. Economou. Classical Vibrational Modes in Phononic Lattices: Theory and Experiment. Physical Review Letters. 2005, (30): 765~809.
    32 M. Kafesaki, E. N. Economou. Interpretation of the Band Structure Results for Elastic and Acoustic Waves by Analogy with the LCAO Approach. Physical Review B. 1995, (52):13317~13331.
    33陆延青,冯一军.离子型声子晶体的光学性质.物理. 2000, 29(4): 193 ~195.
    34齐共金,杨盛良,白书欣,赵饲.二维正方点阵液态声子晶体的带隙计算[J].国防科技大学学报. 2003, (1):25~30.
    35王刚,赵宏刚,温激鸿,韩小云.二维周期钢管阵列带隙特性计算中的时域有限差分算法[J].国防科技大学学报. 2004, (4): 35~37.
    36温激鸿,郁殿龙,王刚,赵宏刚.薄板状周期栅格结构中弹性波传播特性研究.物理学报. 2007, 56(4):2298~2303.
    37郑玲,李以农.基于多重散射理论的二维声子晶体带结构计算.重庆大学学报(自然科学版). 2007,30(6):6~9.
    38赵言诚,苑立波.二维声子晶体异质位错结的界面传导模.应用声学. 2007, 26(4):202~207.
    39牟中飞,吴福根,张欣,钟会林.超元胞方法研究平移群对称性对声子带隙的影响.物理学报. 2007,56(8):4694~4698.
    40肖伟,曾广武.基于波传播的方法研究一维声子晶体的禁带.机械工程学报. 2007,43(1):125~128.
    41黄飞,何程.椭球三维液态声子晶体完全声波禁带.应用声学. 2007, 26(2):107~113.
    42沈平,梅军,刘正猷,温维佳.动态质量密度和声学超常介质.物理. 2007, (36):25~27.
    43胡海昌.谈谈对振动工程的看法.噪声与振动控制. 1996, (30):1~3.
    44刘棣华.粘弹性阻尼减振降噪应用技术.北京宇航出版社, 1990: 55~58.
    45徐志伟. NOPD减振技术的理论研究及工程应用.西安交通大学博士学位论文. 2001:10~14.
    46 ZhengYou Liu, C. T. Chan, Ping Sheng, A. L. Goertzen, J. H. Page. Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment. Physical Review B. 2000, (62):446.
    47 J. Mei, ZhengYou Liu, J. Shi, D. Tian. Theory for Elastic Wave Scattering by a Two-Dimensional Periodical Array of Cylinders: An Ideal Approach for Band-structure Calculations. Physical Review B. 2003, (67):245107.
    48 Fugen Wu, Zhengyou Liu, Youyang Liu. Acoustic Bandgaps Created by Rotating Square Rods in a Two-Dimensional Lattice. Physical Review E. 2002, (66): 046628.
    49 Fugen Wu. Acoustic Bandgaps in Two-Dimensional Rectangular Arrays of Liquids Cylinders. Solid State Communications. 2002, (123):239~242.
    50 Fugen Wu, Zhengyou Liu, Youyan Liu. Acoustic Bandgaps in 2D Liquid Phononic Crystals of Rectangular Structure. Applied Physical D. 2002, (35): 162.
    51 Fugen Wu, Zhengyou Liu, Youyang Liu. Stop Gaps and Single Defect States of Acoustic Waves in Two-Dimensional Lattice of Liquid Cylinders. Physied Letters. 2001, (18):785.
    52钟会林.声子晶体带隙结构优化研究.广东工业大学工学硕士学位论文. 2005, (6):20~26.
    53温熙森.光子/声子晶体理论与应用[M].科学出版社, 2006:75~76, 80-81, 81, 83.
    54 M. Kafesaki, M. M. Sigalas. Elastic Wave Bandgaps in 3-D Periodic Poly -mer Matrix Composites. Solid State Communication. 1995, (96):285.
    55 M.M.Sigalas. Elastic Bandgaps and Defect States in Two-Dimensional Sites. Journal of the Acoustical Society of America. 1997, 101(3):12~56.
    56 M. S. Kushwaha, P. Halevi. Bandgap Engineering in Periodic Elastic Composites. Applied Physical Letters. 1994, (64):1085.
    57 M. S. Kushwaha, B. D. JafariRouhani. Complete Acoustic Stop Bands for Cubic Arrays of Spherical Liquid Balloons. Applied Physical. 1996, (80):3191.
    58 M. S. Kushwaha, P. Halevi. Giant Acoustic Stop Bands in Two-Dimensio -nal Periodic Arrays of Liquid Cylinders. Applied Letters. 1996, 69(1):31.
    59 M. S. Kushwaha. Classical Band Structure of Periodic Elastic Composites.International Journal of Modern Physics B. 1996, (10):9.
    60 M. S. Kushwaha, P. Halevi. Stop-Bands for Periodic Metallic Rods: Sculpt -ures that can Filter the Noise. Applied Physical Letters. 1997, (70):3218.
    61 M. S. Kushwaha, B. D. Rouhani. Giant Sonic Stop Bands in Two-Dimen -sional Periodic System of Fluids. Applied Physical. 1998, (84):4677.
    62 Y. Tanaka. Band Structure of Acoustic Waves in Phononic Lattices:Two Di -mensional with Large Acoustic Mismatch. Physical Review B. 2000, (62): 7387.
    63 Xin Zhang, Zhengyou Liu, Youyan Liu, Fugen Wu. Elastic Wave Bandgaps for Three-Dimensional Phononic Crystals with Two Structural Units. Physi -cal Letters A. 2003, (313):455.
    64 Xin Zhang, Zhengyou Liu, Jun Mei, Youyan Liu. Acoustic Bandgaps for a Two-Dimensional Periodic Array of Solid Cylinders in Viscous Liquid. Physical: Condensed Matter. 2003, (15):4588.
    65 M. M. Sigalas, N. Garcia. Theoretical Study of Three-Dimensional Elastic Bandgaps with the Finite-Difference Time-Domain Method. Journal of Applied Physical. 2000, (87):3122.
    66 M. Kafesaki, M. M. Sigalas, N. Garcia. Wave Spreades in Two-Dimensio -nal Elastic Wave Bandgap Materials. Physied B. 2001, (296):190.
    67温激鸿,王刚,刘耀宗,等.基于集中质量法的一维声子晶体弹性波带隙计算.物理学报. 2004, 53(10):3384~3388.
    68 Y. Y. Chen, Y. Zheng. Acoustic Attenuation by Two-Dimensional Arrays of Rigid Cylinders. Physied Review Letters. 2001, 87(18):184301~184304.
    69华佳,张舒,程建春.三维周期结构声禁带形成机理.物理学报. 2005, 54(3):1261~1266.
    70温激鸿,郁殿龙,王刚,等.周期结构细直梁弯曲振动中的振动带隙.机械工程学报. 2005, 41(4):1~6.
    71温激鸿,刘耀宗,郁殿龙,王刚,赵宏刚.基于散射单元的声子晶体振动带隙研究.人工晶体学报. 2004, 33(3):358~362.
    72博弈创作室. ANSYS9.0经典产品基础教程与实例详解.中国水利水电出版社, 2006:173~174.
    73尚晓江,苏建宇. ANSYS/LS-DYNA动力分析方法与工程实例.中国水利水电出版社, 2006:122~123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700