用户名: 密码: 验证码:
β-胡萝卜素微乳制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用DFT-B3LYP/6-31G*方法计算所得的17种常用溶剂分子结构单元的物性参数,对β-胡萝卜素溶解性能做定量结构性质(QSPR)研究。制备了以Tween80为表面活性剂、丁酸乙酯为油相(无毒,对β-胡萝卜素的溶解度比较大)、乙醇为助表面活性剂的O/W型β-胡萝卜素的微乳液,考察了温度、盐度、pH和防腐剂对微乳区域的影响:电导率法区分了微乳液的O/W、W/O和B.C.区域;对相同浓度β-胡萝卜素的微乳液和丁酸乙酯溶液进行了光、热稳定性研究,用紫外分光光度法测定样品中β-胡萝卜素的残存率;用流变仪和动态光散射的方法研究了空白微乳和含β-胡萝卜素微乳液的微结构。β-胡萝卜素溶解定性研究表明:采用多元线性回归法构建QSPR模型,所得模型线性相关性好,具有较好的预测能力;β-胡萝卜素在一些溶剂中的溶解度大小次序为:四氢呋喃>丁酸乙酯>正己烷>异丙醇。微乳体系研究表明:温度升高和pH值降低使微乳区稍有减小,盐度、防腐剂对微乳区基本无影响;微乳体系中水的质量分数大于61.5%时形成O/W型微乳液;β-胡萝卜素在微乳液和丁酸乙酯溶液中对光和热都比较敏感,但在微乳液中较稳定;β-胡萝卜素加入明显的影响微乳液的微结构,加入β-胡萝卜素使微乳液的W/O区域变小, B.C.和O/W区域变大;同样的,含β-胡萝卜素微乳液的粒径较空白微乳大,含β-胡萝卜素微乳液的粒径同空白微乳液一样,在储藏初期逐渐减小,三天后,开始基本不变,且在一个月内稳定。各种影响因素表明,β-胡萝卜素最好低温避光保存。
     本文开展了以下创新性工作
     1.应用DFT-B3LYP/6-31G*方法计算所得的17种常用溶剂分子结构单元的物性参数,对β-胡萝卜素溶解性能做定量结构性质(QSPR)研究。采用多元线性回归法构建QSPR模型,所得模型线性相关性好,对β-胡萝卜素在不同溶剂中的溶解度具有较好的预测能力,为实验节省了大量时间和经费。
     2.以非离子表面活性剂得到了包封食品强化剂β-胡萝卜素的微乳液载体,并将β-胡萝卜素包封在微乳液中,解决了β-胡萝卜素的水溶性和易被氧化等不稳定性的问题,且工艺简单,成本低。
     3.制得的β-胡萝卜素微乳液的粒径在80nm左右,易于被人体吸收,增强了β-胡萝卜素生物利用度。
The density functional theory method at the B3LYP/6-31G* level were carried out for calculating the physiochemical parameters of the structural units of 17 familiar solvents, which were used to investigated the quantitative structure property relationship(QSPR)of the solubility ofβ-carotene.Microemulsion systems which were used to envelopβ-Carotente were prepared. A microemulsion containing Tween80, ethanol and ethyl butyrate was developed to envelopβ-Carotene with psedu-ternary phase diagram; The O/W, W/O and B.C. regions were divided with conductance method, the influences of temperature, salinity, pH as well as preservative on the microemulsion regions were also considered;The viscosity and the particle sizes variation in two systems of empty microemulsion and that containingβ-Carotene have been investigated; The effects of sunlight, temperature and pH on the stability ofβ-Carotene were comparatively studied both in microemulsion and in ethyl butyrate solution.
     Results of quantum chemistry calculation showed:The best fitted QSPR model obtained has good correlation, small standard deviation and can forecast the solubilities ofβ-carotene in unknown solvents simply and quickly;The solubilizing capacity ofβ-carotene in these solvents: THF > ethyl butyrate > Hexane > 2-propanol.Study of microemulsion showed that O/W microemulsion formed when water weight content was above 61.5% in the mixture; The microemulsion regions decreased slightly with the increase of temperature and the decrease of pH; Salinity and preservative had hardly influences on the microemulsion regions. Thatβ-carotene affected obviously the mesophases curvature and advanced the formation of B.C., and thus enlarged the bicontinuous and O/W regions; DLS showed that the droplets in microemulsion containingβ-Carotene, as well as, in empty microemulsion prepared after 3 days shrunk sharply, then kept remarkable stability even after a month; The figure showed that theβ-Carotene was much more consumed in the sunlight and high temperature, Which denoted that sunlight and high temperature had obviously influences on the stability ofβ-Carotene both in microemulsion and in ethyl butyrate solution; Theβ-Carotene contained in the microemulsion, compared with in ethyl butyrate solution, was much more stable. The test of influencing factors indicated that theβ-carotene microemulsion should be preserved at room temperature and avoided light.
     Some jobs were created in this work, envelopedβ-Carotene in microemulsions, madeβ-Carotene not to be easily oxidized and have good stability.
     1. The density functional theory method at the B3LYP/6-31G* level were carried out for calculating the physiochemical parameters of the structural units of 17 familiar solvents, which were used to investigated the quantitative structure propert relationship (QSPR) of the solubility ofβ-carotene. The best fitted QSPR model obtained has good correlation, small standard deviation and can forecast the solubilities ofβ-carotene in unknown solvents simply and quickly.
     2. The O/W microemulsion to envelopβ-Carotene was formed steadily, which changedβ-Carotene into water-soluble liquid in water and not being easily oxidized in atmosphere, light or temperature.
     3. The diameters ofβ-Carotene microemulsions were around 80nm, which was also believed to enhance its bioavailability.
引文
[1]蔡晓湛,贺银凤.β-胡萝卜素的研究进展[J].农产品加工(学刊), 2005, 8(4): 27-30.
    [2]Mendichir A, Selva A. Non-covalent, association, soft cyclim, altooli gosaccharides with trans-β-carotene in water: evidence for the formation of large aggregates by light scattering and NMR spectroscopy, [J] Carbohydrate Res, 1998, 310(4): 261-267.
    [3]周怡平,闫春丽,修志龙.β-胡萝卜素-β-环糊精包合物的研究[J].精细与专用化学品,2005,13(13): 24-27.
    [4]Tan CP, Nakajima M.β-Carotene nanodispersions: preparation, characterization and stability evaluation[J]. Food Chemistry, 2005, 92: 661–671.
    [5]Paola P, Rita M, Sonia T. Solubilization and stabilization ofβ-carotene in niosomes:delivery to cultured cells[ J]. Chemistry and Physics of Lipids, 2006, 139: 32-42.
    [6]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社, 1999, 75-79.
    [7]安建,沈玉华.微乳状液及其研究[J].阜阳师范学院学报(然科学版), 1997, 32(2): 38-41.
    [8]王延平,孙新波,赵德智.微乳液的结构及应用进展[J].辽宁化工,2004, 33(2): 96-98.
    [9]Hoho HC, Sheu MT. Preparation of microemulsions using polyglycerin fatty acid ester sd surfactant for the delivery of protein drug[J]. J Pharm Sci, 1996, 85(2): 138-143.
    [10]Schechter RS, Bourrel M. Microemulsions and Related Systems [M]. New York: Marcel Dekker. 1998: 160-185.
    [11]陆彬.纳米乳与亚微乳给药系统[J].中国药师, 2004, 7(10): 759-761.
    [12]S恒次, H田中, K森.透明微乳液[P].CN, 1348353A, 2002-05-08.
    [13]邵庆辉,古国榜,章莉娟等.微乳液系统的研究和应用现状与展望[J].江苏化工, 2002, 30 (1): 18-27.
    [14]Bauer K, et al. Oil in water microemulsion [P].US:6426078, 2002-06-30.
    [15]蔡照胜.微乳液厨房清洗剂的研制和生产[J].日用化学工业, 2002, 32 (3): 75-77.
    [16]成国祥,沈峰,姚康德.智能微反应器及纳米微粒制备.化工进展1998, (2): 39-42.
    [17]成国祥,沈峰,张仁柏等反相胶束微反应器及其制备纳米微粒的研究进展.化工学报, 1997(3): 14-19.
    [18]刘军,深忠耀,王涛等.超临界微乳过程.现代化工, 2002, 20(1): 51-54.
    [19]Brenda H H, Jilska M P,et al. Investigation of AOT reverse microemulsions in supercritical.Carbon dioxide. J of Colloids and Surfaces,2001,189:177-181.
    [20]Madavan V, John M., Wiencek. J of Colliod and Interface Science, 1997, 186: 185-192.
    [21]Schomaker R, Robinson BH, Fletcher P D. J of Chem Soc Faraday Trans, 1998, 84: 4203-4220.
    [22]Schomaker R, Stickdom K, Knoche W. J of Chem Soe Faraday Trans, 1998, 87: 948-958.
    [23]陆彬主编药物新剂型与新技术〔北京,人民卫生出版社,〕2002: 60.
    [24]刘杰,刘少杰,吕峰峰等.微乳液体系作为药物载体的研究进展[J].日用化学工业, 2004, 34(2): 100-104.
    [25]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社, 1997, 403-410.
    [26]南照东,李干佐,顾强等.非离子表面活性剂Tween80相图的研究[J].化学研究与应用, 2002, 14(4): 401-404.
    [27]Ping L, Anasuya G, Robert FW, et al. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions [J]. Inter J Pharm, 2005, 288: 27-34.
    [28]Saint RH, Attwood D, Ktistis G, Taylor CJ. Phase studies and particle size analysis of oil-in-water phospholipid microemulsions[J]. International Journal Of Pharmaceutics, 1995, 116: 253-261.
    [29]Chapman D. Biological Membrane. Academic, 1968.
    [30]龚福忠,唐艳霞,李成海,等.非离子型微乳液的形成及其相行为研究[J].广西大学学报(然科学版), 2002, 27 (2): 128-132.
    [31]Wang Z W, Li G Z, Zhang XY, Wang RK, Lou A J. A Quantitative Structure-Property Relation for the Prediction of Critical Micelle Concentration of Nonionic Surfactants. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002, 197: 37-45.
    [32]Wang ZW, Feng JL, Wang HJ, Cui ZG, Li GZ., Effectiveness of Surface Tension Reduction by Nonionic Surfactants with Quantitative Structure-Property Relationship Aproach, J. Dispersion Science and Technology, 2005, 26(4): 441-447.
    [33]Wang ZY, Xiang Y, Zhai ZC, QSPR to aqueous solubility (lgSw) of alkyl(1-phenylsulfonyl) cycloalkane-carboxylates using MLSER model and ab initio. Chemosphere, 2006, 62: 349–356.
    [34]Yang GY, Zhang XC, Wang ZY, Estimation of the aqueous solubility (-lgSw) of all polychlorinated dibenzo-furans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) congeners by density functional theory. Journal of Molecular Structure: THEOCHEM, 2006, 766: 25–33.
    [35]Schmidt MW, Baldridge KK, Boatz JA, J Comput Chem, 1993: 14: 1347-1358.
    [36]Lan M, Russell S, Drago and David E. A model based QSPR analysis of the unified non-specific solvent polarity scale. J. Chem. Soc., Perkin Trans. 1998, 2: 159-167.
    [37]Yizhak M. Solubility of C60 Fullerene. J. Phys. Chem. B, 2001, 105: 2499-2506.
    [38]Ruoff RS, Tse DS, et al. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem., 1993, 97(13): 3379-3383.
    [39]Neal E, Craft JH, Soares J, Relative Solubility, Stability, and Absorptivity of Lutein andβ-Carotene in Organic Solvents [J]. J Agric Food Chem, 1992, 40: 431-434.
    [40]蒋先明.溶剂极性经验参数.化工技术与开发, 1987, 1: 9-17.
    [41]徐云蕾,俞春芳,黑恩成等.液体内压的预测和新溶解度参数值.化工学报, 2000, 51(3): 407-413.
    [42]朱龙观,俞庆森.国外医学.药学分册, Foreign Medical Sciences Section On Pharmacy, 1995, 22(4): 206-210.
    [43]杨锦宗,兰云军.微乳状液制备技术及其发展状况[J].精细化工, 1995, 12(4): 7-10.
    [44]刘妙青,卢建军,李文英.非离子型表面活性剂微乳液的制备及影响因素[J].太原理工大学学报, 2005, 36(2): 269-273.
    [45]陈宗淇,张洪林,郝策,赵泽荣,祁琳.pH和盐类对非离子型表面活性剂所组成微乳液的异常流变性影响[J].化学学报.1995, 53: 625-631.
    [46]薛美玲,张积树,于永良,蔺玉胜,陈宗淇.微乳液变型及W/ O型导电机理的研究[J].青岛化工学院学报,1998, 19(1): 21-26.
    [47]Podlogar F., Gasperlin M, Tomsic M, Jamnik A, Bester R M. Structural characterisation of water–Tween 40/Imwitor 308–isopropyl myristate microemulsions using different experimental methods. International Journal of Pharmaceutics , 2004, 276: 115–128.
    [48]秦德志,邵斌,喻峰.β-胡萝卜素的主要剂型[J].中国食品添加剂.2003, 6: 66-69.
    [49]彭顺金,张贵军,陈正国,程时远. Span及Tween类物质的组成、性能、表征与应用[J].聚合物乳液通讯, 1997, 16(1): 27-34.
    [50]张晓光.农药微乳液组成及性能研究[D].上海:中国日用化学工业研究院,2002.
    [51]Romanno l M G, Nicoletta C. Effects of polymer addition on the rheology of O/W microemulsions [J]. Rheol Acta 2001, 40: 185-192.
    [52]吴晶,黄澜,吕圭源.天然色素的药理作用研究概况.时珍国医国药,2005, 16(9): 915-916.
    [53]陈存社,董银卯,陆辛玫,黄毅,王华南.食用天然色素的提取及其稳定性研究[J].天然产物研究与开发, 2001, 13(6): 39-40.
    [54]John F, Katrine KD, Neil P, Thomas R, Harjinder S. Solubilisation of soybean oil in microemulsions using various surfactants[J].Food Hydrocolloids, 2006, 20: 253–260.
    [55]Charman S A, Charman WN, Rogg MC, et al. Self-emulsifying systems formulation and biological evaluation of an investigative lipophilic compound [J]. Pharm. Res, 1992, 9: 87-94.
    [56]Zana R. Surfactant solutions: new methods of investigation[M]. New Yore: Marcel Dekker, Inc., 1987: 209-240.
    [57]Gregory GW. Shear and Elongational Rheology of ternary microemulsions[J]. Colloids and Surfaces, 1995, 103: 273-279.
    [58]牟建海,李干佐.表面活性剂聚集体的流变性质[J].日用化学工业, 2002, 32(1): 38-42.
    [59]Chen H E, Peng HY, Chen BH. Stability of carotenoids and vitamin A during storage of carrot juice[J]. Food Chemistry, 1996,V57: 497-503.
    [60]Shah, Micelles, D.O. (1998). Microemulsions, and Monolayers-Science and Technology, Marcel Dekker, New York. Sj?blom, J., Lindberg, R., Friberg, S. E. Microemulsions-phase equilibria characterization, structures, applications and chemical reactions .Adv. Colloid Interface Sci, 1996,65; 125-287.
    [61]Ruckenstein E. Thermodynamic insights on macroemulsion stability Advances in Colloid and Interface Science. Advances in Colloid and Interface Science, 1999,79: 59-76.
    [62]Acosta E, Kurlat DH, Bisceglia M, et al. Induced electric birefringence and viscosity studies in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 106: 11-21. [ 63]Chen CM, Warr GG. Rheology of ternary microemulsions [J]. J. Phys. Chem., 1992, 96: 9492-9497.
    [64]Garti N, Yaghmur A, et al. Improved Oil Solubilization in Oil/Water Food Grade Microemulsions in the Presence of Polyols and Ethanol, J. Agr. Food Chem, 2001,49: 2552-2559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700