用户名: 密码: 验证码:
制备方法对二氧化铅电极结构及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以PbO_2电极为研究对象,探讨了制备方法对PbO_2电极结构、形貌、电化学性能以及电极稳定性和寿命的影响,并以不同方法制备的PbO_2电极为阳极,研究了Cr~(3+)电化学氧化过程的反应速率及瞬时电流效率。
     (1)分别采用电解法制备了Pb/PbO_2电极、用电沉积法制备了Ti/SnO_2+Sb_2O_3/PbO_2电极、用热分解法制备了钛基铅氧化物膜层,对它们的结构及形貌进行了表征。研究了热分解法制备的钛基铅氧化物膜层及电沉积法制备的钛基PbO_2电极添加中间层前后的形貌和结构。结果表明:三种不同方法制备的PbO_2结构明显不同。电解法制备的Pb/PbO_2电极的表面结构由β-PbO_2和α-PbO_2组成;采用电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极其表面结构主要为β-PbO_2;而热分解法制备的钛基铅氧化物膜层表面结构主要是Pb3O4,且需经阳极氧化方可转为β-PbO_2电极。此外,热分解法制备的钛基铅氧化物膜层及电沉积法制备的钛基PbO_2电极添加中间层前后的结构无明显差异。三种不同方法制备的PbO_2电极的表面形貌存在明显差异,Pb/PbO_2电极没有规则的结晶,表面有明显孔洞,堆积疏松。电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极表面呈块状堆积,而热分解法制备的添加锡锑中间层的钛基铅氧化物膜层呈棒状,经电解转为β-PbO_2,形貌仍为棒状。
     (2)电极活性表面积的大小可反映电极的电催化性能,而电极表面的电化学活性表面积又可用伏安电荷来表征。在硫酸介质中,对不同扫描速度下的循环伏安曲线积分可得到伏安电荷,根据伏安电荷与扫描速度的关系可以计算得到电极的电化学内活性表面积和外活性表面积。实验结果表明:电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极的电化学活性表面积最小,热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极与Pb/PbO_2电极相比,总电化学活性表面积及内活性表面积均较高,外活性表面积则比较小。三种不同方法制备的PbO_2电极在硫酸溶液中的伏安特性研究表明:析氧电位由小到大依次为:热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极、电解法制备的Pb/PbO_2电极、电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极。在相同电位下,阳极氧化过程的电流密度由高到低依次为:热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极、电解法制备的Pb/PbO_2电极、电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极。在60℃、1.0mol/L H_2SO_4溶液、电流密度为4.0A/cm~2的实验条件下,强化电极寿命结果表明:电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极的强化寿命最长为135h,电极电解120h槽电压变化不大,比较稳定;而热分解法制备Ti/SnO_2+Sb_2O_3/PbO_2电极的寿命仅为25h,电解22h电极比较稳定。
     (3)分别以不同方法制备的PbO_2电极为工作电极,研究了Cr~(3+)的电化学氧化,测试结果表明:三种电极的阳极氧化峰电流均随着硫酸介质中Cr~(3+)浓度的增大而略有降低。分别以三种不同方法制备的PbO_2电极为阳极,研究了Cr~(3+)电化学氧化过程的反应速率及电流效率。实验结果表明:在相同实验的条件下,以热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极为阳极时,Cr~(3+)电化学氧化过程的反应速率及电流效率最大,Pb/PbO_2电极次之,而以电沉积法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极为阳极时过程的反应速率及电流效率则最小。
The anodes of PbO_2 were studied in this paper. The surface microstructure and morphology, electrochemical performance and life time of the PbO_2 anodes prepared by different methods were studied. The reaction rates and current efficiencies of the oxidation of Cr~(3+) with the PbO_2 prepared by different methods as anodes under the same experimental condition were compared.
     (1) The Pb/PbO_2 anode was prepared by electrolysis, the Ti/SnO_2+Sb_2O_3/PbO_2 anode was prepared by electrodeposition, and the lead oxide coatings were prepared by thermal decomposition. The surface microstructure of the PbO_2 prepared by different methods was examined by means of XRD. The experimental results show that the microstructures of the PbO_2 anodes prepared by different methods are different. The microstructure of the Pb/PbO_2 anode prepared by electrolysis is consisted of mixture ofα- andβ-phases of PbO_2; The microstructure of the Ti/SnO_2+Sb_2O_3/PbO_2 anode prepared by electrodeposition is detected mainly theβ-phases of PbO_2, and an examination of the XRD show the microstructure of lead oxide coatings prepared by thermal decomposition are Pb3O4. In addition, the microstructure of lead oxide coatings prepared by thermal decomposition are changing during electrolysis in H_2SO_4, the films of Pb3O4 are completely converted to theβ-PbO_2 after electrolysis. In addition, The surface morphology of the PbO_2 anodes prepared by different methods was examined by means of SEM. An amorphous mass with high porosity is formed in the surface of the Pb/PbO_2 anode and the morphology of the Ti/SnO_2+Sb_2O_3/PbO_2 anode prepared by electrodeposition display a blocklike structure; The SEM micrographs of the lead oxide coatings prepared by thermal decomposition showed that its morphology is sticklike structure.
     (2) The activity of electrocatalysts depends on the electrochemical active surface area partly. Electrochemical active surface area of PbO_2 anodes prepared by different methods was calculated. The results show that the electrochemical active surface area of PbO_2 anodes prepared by electrodeposition is the lowest. And the electrochemical active surface area of Ti/SnO_2+Sb_2O_3/PbO_2 anode prepared by thermal decomposition is higher than the anode of Pb/PbO_2. The electrochemical behavior of the PbO_2 anodes prepared by different methods was determined, the experimental results show that the peak current of the evolution of oxygen may be arranged by the following order: the anode of Ti/SnO_2+Sb_2O_3/PbO_2 prepared by thermal decomposition is higher than the anode of Pb/PbO_2 prepared by electrolysis, and the anode of Pb/PbO_2 prepared by electrolysis is higher than the anode of Ti/SnO_2+Sb_2O_3/PbO_2 prepared by electrodeposition. The lifetimes of the Ti/SnO_2+Sb_2O_3/PbO_2 anodes prepared by different methods were assessed by the accelerated lifetime test, and the experimental results show that the lifetime of Ti/SnO_2+Sb_2O_3/PbO_2 anode prepared by electrodeposition performed at 60℃and in 1.0mol/L H_2SO_4 with an anodic current density of 4.0A/cm~2 is 135h while the lead oxide coatings prepared by thermal decomposition is 25h.
     (3) The electrochemical behavior of the PbO_2 anodes prepared by different methods were studied, the experimental results show that the peak current of the evolution of oxygen decrease with increasing the concentration of Cr~(3+). Under the same experimental condition, the reaction rates and current efficiencies of the oxidation of Cr~(3+) with the Ti/SnO_2+Sb_2O_3/PbO_2 prepared by thermal decomposition as anode are higher than the Pb/PbO_2, and the Ti/SnO_2+Sb_2O_3/PbO_2 anode prepared by electrodeposition is the lowest.
引文
[1]Claudia Baruffaldi, Sandro Cattarin, Marco Musiani. Deposition of non-stoichiometric tungsten oxides+MO_2 composites(M=Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reaction[J]. Electrochimica Acta, 2003, 48:3921-3927
    [2]Li Xiao yan, Cui Yu hong, Feng Yu jie, Xie Zhao ming, Gu Ji Dong. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J]. Water Research, 2005, 39:1972-1981
    [3]Shibli S. M. A., George Sony. Electrochemical impedance spectroscopic analysis of activation of Al-Zn alloy sacrificial anode by RuO_2 catalytic coating[J]. Applied Surface Science, 2007, 253:7510-7515
    [4]马淳安.有机电化学合成导论[M].北京:科学出版社, 2002:138, 49
    [5]冯玉杰,蔡伟民.环境工程中的功能材料[M].北京:化学工业出版社, 2003:58
    [6]Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochimica Acta, 1984, 29:1503-1512
    [7]Mottram Couper A, Pletcher Derek, Walsh Frank C. Electrode material for Electrosynthesis[J]. Chemical Review, 1990, 90:837-865
    [8]陈康宁.金属阳极[M].上海:华东师范大学出版社, 1989:1
    [9]曹梅. Al基SnO_2+Sb_2O_3、SnO_2+Sb_2O_3+MnO_2涂层二氧化铅电极的制备及其应用[D].昆明理工大学,2005
    [10]胡吉明,张鉴清,王建明,曹楚南.金属及活性氧化物表面的析氧电催化活性[J].功能材料, 2002, 33:363-365
    [11]Comninellis Ch, Vercesi G. P. Characterization of DSA-type oxygen evolving electrodes: choice of a coating[J]. Journal of Applied Electrochemistry, 1991, 21:335-345
    [12]Terezo A. J., Pereira E. C. Fractional factorial design applied to investigate properties of Ti/IrO_2-Nb2O5 electrodes[J]. Electrochimica Acta, 2000, 45:4351-4358
    [13]顾彬. Ti/SnO_2+Sb_2O_3电极的制备及其在模拟苯酚废水处理中的应用[D].扬州大学, 2007
    [14]冯玉杰,李晓岩,尤宏,丁凡.电化学技术在环境工程的应用[M].北京:化学工业出版社, 2002:91
    [15]陈玉华.有机电合成的研究进展[J],常州技术师范学院学报, 1997, 3:23-28
    [16]Marco Musiani, Ferdinando Furlanetto, Renzo Bertoncello. Electrodeposited PbO_2+RuO_2: a composite anode for oxygen evolution from sulphuric acid solution[J]. Journal of Electroanalytical Chemistry, 1999, 465:160-167
    [17]Hernández S. C., Yoo B. Y., Stefanescu E, Khizroev S, Myung N. V. Electrodeposition of iron-palladium thin films[J]. Electrochimica Acta, 2008, 53:5621-5627
    [18]Song yue hai, Wei gang, Xiong rong chun. Structure and properties of PbO_2-CeO_2 anodes on stainless steel[J]. Electrochimica Acta, 2007, 52:7022-7027
    [19]Josimar Ribeiro, Adalgisa R. de Andrade. Investigation of the electrical properties, charging prosess, and passivation of RuO_2-Ta2O5 oxide films[J]. Journal of Electroanalytical Chemistry, 2006, 592:153-162
    [20]Szpyrkowicz L, Radaelli M, Daniele S. Electrocatalysis of chlorine evolution on different materials and its influences on the performance of an electrochemical reactor for indirect oxidation of pollutants[J]. Catalysis Today, 2005, 100:425-429
    [21]Hu ji ming, Zhang jian qing, Cao chu nan. Thermolytic formation and microstructure of IrO_2+Ta2O5 mixed oxide anodes from chloride precursors[J]. Thermochimica Acta, 2003, 403:257-266
    [22]Lassali T. A. F., Boodts J. F. C, Bulh?es L. O. S. Effect of Sn-precursor on the morphology and composition of Ir0.3Sn0.7O_2 oxide films prepared by sol-gel process[J]. Journal of Non-crystalline Solids, 2000, 273:129-134
    [23]Correa-lozano B, Comninellis Ch, Battisti De. Preparation of SnO_2-Sb2O5 films by the spray pyrolysis technique[J]. Journal of Applied Electrochemistry, 1996, 26:83-89
    [24]周雅宁,刘金盾,方文骥. F-PbO_2/SPE复合膜电极的制备及优化[J].河南化工, 2006,23:10-12
    [25]Nasr Bensalah, Abdellatif Gadri. Electrochemical oxidation of 2,4,6-trinitrophenol on boron-doped diamond anodes[J]. Journal of Electrochemical Society, 2005, 152:113-116
    [26]Zhao Jin Shi, Sim Joon Seop, Lee Hyun Ju, Park Dong-Park, Hwang Cheol Seong. Investigation of the deposition behavior of a lead oxide thin film on Ir substrates by liquid delivery metallorganic chemical vapor deposition[J]. Electrochemical and Solid-state Letters, 2006, 9:C29-C31
    [27]Fóti G, Mousty C, Reid V, Comninellis Ch. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor[J]. Electrochimica Acta, 1998, 44:813-818
    [28]陈延禧.电解工程[M].天津:天津科学技术出版社, 1993:160
    [29]Comninellis Ch, Vercesi G. P. Problems in DSA coating deposition by thermal decomposition[J]. Journal of Applied Electrochemistry, 1991, 21:335-345
    [30]Salazar-Banda G. R., Suffredini H. B., Calegaro M. L., Tanimoto S. T., Avaca L. A. Sol-gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium[J]. Journal of Power Sources, 2006, 162:9-20
    [31]Pani? V, Dekanski A, Mi?kovi?-Stankovi? V.B, Milonji? S, Nikoli? B. On the deactivation mechanism of RuO_2-TiO_2/Ti anodes prepared by the sol-gel procedure[J]. Journal of Electroanalytical Chemistry, 2005, 579:67-76
    [32]Suffredini H.B, Tricoli V, Vatistas N, Avaca L.A. Electro-oxidation of methanol and ethanol using a Pt-RuO_2/C composite prepared by the sol-gel technique and supported on boron-doped diamond[J]. Journal of Power Sources, 2006, 158:124-128
    [33]梁镇海.固溶体中间层钛基氧化物阳极研究[D].太原理工大学, 2006
    [34]Abaci Serdar, Pekmez Kadir, Hōkelek Tuncer, Yildiz Attila. Investigation of some parameters influencing electrocrystallisation of PbO_2[J]. Journal of Power Sources, 2000, 88: 232-236
    [35]Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater[J]. Electrochimica Acta, 1998, 43:3303-3312
    [36]孙凤梅,潘建跃,罗启富,陶自春. PbO_2阳极材料的研究进展[J].兵器材料科学与工程, 2004, 27:68-72
    [37]张招贤.钛电极工学[M].第2版,北京:冶金工业出版社, 2003:178-180, 181,203
    [38]Codaro E. N., Vilche J. R. A kinetic study of the electroformation of PbO_2 on Pb electrodes in sulphuric acid solution[J]. Electrochimica Acta, 1997, 42:549-555
    [39]Ghasemi Shahram, Hassan Karami, Mir Fazlollah Mousavi, Shamsipur Mojtaba. Synthesis and morphological of pulsed current formed nano-structured lead dioxide[J]. Electrochemistry Communication, 2005, 7:1257-1264
    [40]孙智权.钛基锡锑氧化物涂层阳极的研究[D].吉林大学, 2005
    [41]Velichenko A. B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide[J]. Journal of Fluorine Chemistry, 2007, 128:269-276
    [42]Velichenko A. B., Amadelli R., Baranova E. A., Girenko D. V., Danilov F. I. Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Journal of Electroanalytical Chemistry, 2002, 527:56-64
    [43]Velichenko A. B. Mechanism of lead dioxide electrode position[J]. Journal of Electroanalytical Chemistry, 1996, 405:127-132
    [44]Amadelli R, Velichenko A. B. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes[J]. Electrochimaca Acta, 1999, 45:713-720
    [45]Gilroy D,Stevens R. The electrodeposition of lead dioxide on titanium[J]. Journal of Applied Electrochemistry, 1980, 10:511-525
    [46]韦国林,张利. PbO_2电极制备及其析氧性能考察[J].上海大学学报(自然科学版), 1997, 3:302-305
    [47]韦国林,张利,顾海军,冯建星.电沉积PbO_2电极的析氧行为[J].电池, 1998, 28:160-163
    [48]黄永昌.金属氧化物阳极在湿法冶金中的应用[J].有色金属, 1980, (2):27-29
    [49]赵崇涛.钛基二氧化铅电极电解制取微粒二氧化锰[J].无机盐工业, 1992, (1):2-5
    [50]Tong shao ping, Ma chun an, Feng hui. A novel PbO_2 electrode preparation and its application in organic degradation[J]. Electrochimica Acta, 2008, 53:3002-3006
    [51]杨建朝,潘会波,陈凤云,鞠鹤. Ti/PbO_2电极的研制[J].稀有金属材料与工程, 1994, 22:50-56
    [52]孙凤梅,潘建跃,罗启富.含铂中间层二氧化铅阳极的制备及其性能[J].材料保护, 2006, :53-54
    [53]植思稔.供电用的镀氧化铅电极及其制造方法[P].中国专利: 87106028, 1987
    [54]Lee Jaeyoung, Varela Hamilton, Uhm Sungyun, Tak Yongsug. Electrodeposition of PbO_2 onto Au and Ti substrates[J]. Electrochemistry Communications, 2000, 2:646-652
    [55]Ueda M, Watanabe A, Kameyama T. Preformance characteristic of a new type of lead dioxide-coated titanium anode[J]. Journal of Applied Electrochemistry, 1995, 25:817-822
    [56]梁镇海,王保成,孙彦平,许文林. Ti/SnO_2+Sb2O3/PbO_2电极的电催化性能[J].材料科学与工程, 1996, 14:62-63
    [57]王岚,金世雄.钛基氧化物电极的性能及电化学行为[J].应用化学, 1993, 10:35-38
    [58]韩卫清,周刚,王连军,孙秀云,李健生. Ti/SnO_2+Sb2O3/β-PbO_2阳极电化学氧化异噻唑啉酮[J].过程工程学报, 2006, 6:566-570
    [59]童宏扬.以Ti为基体的电极材料的开发应用基础研究[D].扬州大学, 2004
    [60]王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO_2+Sb2O3 /PbO_2电极性质研究[J].无机材料学报, 2003, 18:1033-1038
    [61]王雅琼,童宏扬,许文林.不同前驱体制备的锡锑中间层对Ti/SnO_2+Sb2O3/PbO_2电极性能的影响[J].稀有金属材料与工程, 2004, 33:976-979
    [62]陈敏元,有机化学将成为21世纪的热门学科[J].化工时刊, 1999, 13:40-43
    [63]王光信,张积树.有机电合成导论[M].北京:化学工业出版社, 1997, 72
    [64]阚显文,陶海升,高迎春,方宾.超声电解氧化Mn(Ⅱ)电流效率的研究[J].安徽师范大学学报(自然科学版), 2004, 27:52-54
    [65]王岚,范明松,彭艺,金世雄.电极材料、温度等因素对Ce~(3+)阳极氧化过程的影响[J].南开大学学报(自然科学), 1997, 30: 81-87
    [66]Comninellis Ch, Plattner E, Javet Ph. The oxidation of o-nitrotoluene to o-nitrobenzaldehyde with electrogenerated cobaltic sulphate[J]. Journal of Applied Electrochemistry, 1979:753-755
    [67]胡瑞省,刘欣,顾登平,张元静. Cr2O72-/Cr~(3+)和Ce4+/Ce~(3+)电解液作间接合成对甲氧基苯甲醛[J].高校化学工程学报, 2005, 19:134-138
    [68]谢永超,鲁站光,杨晓燕,张积树. Cr~(3+)在Pb/PbO_2电极上的电化学氧化[J].青岛科技大学学报, 2004, 25:107-111
    [69]De Souza Claudio E, Machado Sergio A S, Mazo Luiz H. Electrochemical oxidation of chromium(Ⅲ) on Pb/PbO_2[J]. Quim Nova, 1993, 16:426-430
    [70]Vargalyuk V. F, Loshkarev Yu.M, et al. Kinetics and mechanism of electrooxidation of chromium(~(3+)) at metal oxide electrodes [J]. Elektrokhimiya, 1989, 25:992-994
    [71]Ralph McKee.H, Leo Shoo Tze. A continuous process for electrolytic regeneration of chromic acid [J]. The Journal of Industrial and Engineering Chemistry, 1920, 12:16-26
    [72]Gross R.F.J, Hickling A. Studies in electrolytic oxidation. Part IX. The anodic oxidation of chromic salts to chromates[J]. Journal of chemical society, 1937, 6: 325-330
    [73]石志超,糜天英,朱荣昭. PbO_2电极Cr(Ⅲ)阳极氧化为Cr(Ⅵ)的机理研究:铂电极上的Cr(Ⅲ)阳极氧化为铬酸盐的机理研究[M].武汉,第四届全国电化学会议论文摘要(五), 1997, 10:5013-5015
    [74]陈昌平,王雅琼,许文林. PbO_2为阳极Cr~(3+)电化学氧化伏安特性的研究[J].化学工业与工程, 2002, 19:411-416
    [75]Danilov F.I, Velichenko A.B. Electrocatalytic activity of anodes in reference to Cr(Ⅲ) oxidation reaction[J]. Electrochimica Acta, 1993, 38:437-440
    [76]Devilliers D, Thi Dinh M. T., MahéE, Xuan Le Q. Cr(Ⅲ) oxidation with lead dioxide-based anodes[J]. Electrochimica Acta, 2003, 48: 4301-4309
    [77]Arslan Cüneyt, Paul Duby F. The anodic oxidation of Cr(Ⅲ)to Cr(Ⅵ) in a laboratory-scale chromium electrowinning cell[J]. Hydrometallury, 1997, 46:337-348
    [78]王雅琼,陈昌平,童宏扬,许文林. Ti/SnO_2+Sb_2O_3/PbO_2电极在硫酸溶液中Cr~(3+)氧化的电化学性能[J].过程工程学报, 2003, 3:125-129
    [79]冯玉杰,沈宏,崔玉虹,刘俊峰.钛基二氧化铅电催化电极的制备及电催化性能研究[J].分子催化, 2002, 16:181-186
    [80]陈昌平. Cr~(3+)电化学氧化生成Cr_2O_7~(2-)过程研究[D].扬州大学, 2002
    [81]胡吉明,朱艳冗,孟惠民,孙冬柏,吴继勋,杨德钧.钛基IrO_2-Ta2O5涂层阳极电化学多孔性研究[J].稀有金属, 2000, 24:345-348
    [82]Spinolo G, Ardizzone S, Trasatti S. Surface characterization of Co3O4 electrodes prepared by the sol-gel method. Journal of Electroanalytical Chemistry. 1997, 423: 49-57
    [83]Pani? V, Dekanski A, Milonji? S, Atanasoski R, Nikoli? B. The influence of the aging time of RuO_2 and TiO_2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol-gel procedure[J]. Electrochimica Acta, 2000, 46:415-421
    [84]王雅琼,陈昌平,许文林.紫外可见光谱法测定Cr~(3+)电化学氧化过程中的Cr_2O_7~(2-)[J].光谱学与光谱分析, 2003, 23:1146-1149
    [85]Jordanis C. G Thanos, Dietrich W. Wabner. Structural changes of the texture ofβ-lead dioxide-titanium anodes during the oxygen/ozone electrosynthesis in neutral and acidic electrolytes[J]. Journal of Electroanalytical chemistry, 1985, 182: 37-49
    [86]Cestarolli D. T., De Andrade A. R. Electrochemical and morphological properties of Ti/Ru0.3Pb(0.7-x)TixO_2-coated electrodes[J]. Electrochimica Acta. 2003, 48:4137-4142
    [87]Terzo A. J, Pereira E. C. Preparation and characterization of Ti/RuO_2-Nb_2O_5 electrodes obtained by polymeric precursor method[J]. Electrochimica Acta. 1999, 44: 4507-4513
    [88]胡吉明,吴继勋,孟惠民. Ti基IrO_2+Ta_2O_5涂层中氧化物附着量的XRF分析[J].材料保护, 2000, 33:43-44
    [89]Forti J. C., Olivi P, De Andrade A. R. Characterisation of DSA-type coatings with nominal composition Ti/Ru0.3Ti(0.7-x)SnxO_2 prepared via a polymeric precursor[J]. Electrochimica Acta. 2001, 47:913-920
    [90]De Pauli C. P., Trasatti S. Electrochemical surface characterization of IrO_2+SnO_2 mixed oxide electrocatalysis[J]. Journal of Electroanalytical Chemistry. 1995, 396:161-168
    [91]Trasatti Sergio. Physical electrochemistry of ceramic oxides[J]. Electrochimica Acta, 1991, 36:225-241
    [92]Ruetschi P, Sklarchuk J, Angstadt R. T. Stability and reactivity of lead oxides[J]. Electrochimica Acta, 1963, 8: 333-342
    [93]赵雅玲,龙秀慧,初立英.钛基IrO_2-Ta_2O_5氧化物阳极失效过程监测及失效机制探讨[J].材料保护, 2006, 38:48-51
    [94]许立坤,董飒英,高玉柱,董克贤,王朝臣,陈光章.金属氧化物阳极的失效行为研究[J].腐蚀科学与防护技术, 1998, 10:337-341
    [95]Fujinaga Taitiro, Yoshimura Tadayosi. Investigation of the electrode reaction of chromium(Ⅲ)at the lead dioxide electrode[J]. Fresnius Zeitschrift Für Analytische Chemie, 1981, 306:20-23
    [96]Andel Van. Y, Janssen L. J. J. Electrochemical regeneration of chrome etching solution[J]. Journal of Applied Electrochemistry, 2002, 32:481-486
    [97]刘峥,李亚敏.间接电解氧化法制备环己酮[J].合成化学, 2002, 10:140-145
    [98]赵建宏,王留成,宋成盈等.间接电氧化合成2-甲基-1,4-萘醌Ⅱ.电氧化转化Cr~(3+)为Cr6+的研究[J].精细化工, 2000, 17:64-66
    [99]Abaci Serdar, Tamer Ugur, Pekmez Kadir, Yildiz Attila. Performance of different crystal structures of PbO_2 on electrochemical degradation of phenol in aqueous solution[J]. Applied Surface Science, 2005, 240:112-119
    [100]林海波,刘小波,孙智权,张恒彬. Ti/PbO_2和Ti/Ru-Ti-Sn氧化物涂层电极上苯酚的电化学氧化和降解[J].高等学校化学学报, 2005, 26:1709-1711
    [101]申哲民,雷阳明,贾金平,陈玉胜,王文华. PbO_2电极氧化有机废水的研究[J].高校化学工程学报, 2004, 18:105-108
    [102]朱秀萍,石绍渊,孔江涛,倪晋仁. PbO_2电极的改性及其在难降解有机废水电化学处理中的应用[J].环境污染治理技术与设备, 2006, 7:95-99
    [103]Samet Y., Elaoud Chaabane S., Ammar S., Abdelhedi R.. Electrochemical degradation of 4-chloroguaiacol for waster treatment using PbO_2 anodes[J]. Journal of Hazardous Materials, 2006, 138:614-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700