用户名: 密码: 验证码:
滇池宝象河流域农田土壤氮素累积对水环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水体富营养化已成为世界上最严重的水环境质量问题之一,氮是导致水体富营养化的主要因子,土壤氮素的累积会增加农田氮的流失风险,影响水环境质量。本文研究了宝象河流域不同土地利用类型,不同土壤层次土壤氮的累积与水体氮污染浓度特征,结果表明:
     (1)宝象河流域农田土壤pH值5.2~8.12之间,即整个研究区域内土壤pH值处于弱酸性和碱性之间;土壤有机质含量8.18~73.68g/kg,土壤有机质处于较高和一般含量水平之间。整个宝象河流域0~10cm土壤全氮含量为:0.40~3.60g/kg,平均值为:1.94g/kg。10~20cm土壤全氮含量为:0.40~3.41g/kg,平均值为:1.69g/kg,宝象河土壤的全氮含量显著高于全国和云南省的平均含量,全氮含量比较丰富。
     (2)整个宝象河流域0~10cm、10~20cm层次土壤全氮含量依次为:下游大棚土壤>中上游平地耕地>下游平耕地>中上游坡耕地>上游稀疏林地,结果表明0~20㎝下游大棚土壤氮素有累积明显,且总体趋势是近城区的土壤总氮平均累积水平高于上游和近滇池的平耕地。从分级情况上看,下游、中游土壤总氮和碱解氮含量主要处于高水平,上游的主要处于中级水平,整个流域氮素含量水平较高。
     (3)不同层次土壤全氮表现为0~10cm土层>10~20cm土层,不同层次土壤碱解氮除上游坡耕地外其余土壤利用类型均表现为0~10cm土层土壤>10~20cm土层土壤,且层次间差异不显著。不同土地利用类型土壤全氮含量表现为下游大棚土壤>中上游平地耕地>下游平耕地>中上游坡耕地>上游稀疏林地,下游大棚土壤的全氮与上游稀疏林地的全氮含量达到显著性差异;土壤碱解氮含量表现为下游大棚土壤>中上游平地耕地>中上游坡耕地>上游稀疏林地>下游平耕地,下游大棚土壤的碱解氮含量分别与上游稀疏林地和下游平耕地的碱解氮含量达到显著性差异。
     (4)宝象河不同河段农田沟渠水和河道水体氮素浓度有较大差异,总体趋势是沟渠水氮浓度高于河道水体氮浓度、河道水体和沟渠水体氮含量由上游到下游逐渐增加;硝态氮是水体氮素的主要形式,硝态氮占总氮比重大于氨态氮占总氮的比重。氮素浓度随时间(2008年6月~2008年11月)动态变化总体趋势是先升高后降低再升高;TN、NO_3~-- N和NH_4~+ - N含量随时间呈现明显的动态变化。
     (5)对农田水体氮素污染特征的影响因素研究中发现:雨季降雨量的多少对沟渠水和河道水体中氮素含量具有一定的影响,沟渠周边表层土壤氮含量与沟渠水氮含量、沟渠沉积物氮含量与沟渠水氮含量间有显著的正相关性。对沟渠周边表层土壤和沟渠水体总氮含量进行相关性分析表明:7月沟渠旁表层土壤和沟渠水体总氮含量显著正相关,11月沟渠周边表层土壤和沟渠水体总氮含量相关,但是相关性不显著,这恰好说明降雨是氮素流失的一个主要因素。
     (6)在沟渠流动的条件下,当沟渠水浓度高于河道水浓度时,农田沟渠对河道氮素具有增负荷影响。降雨是氮素流失的重要影响因素,施肥后降雨能使沟渠水中总氮浓度升高,如果降雨强度大到能使沟渠流动,那么氮素极其容易随水流进入宝象河。
At present, eutrophication has become the world’s most serious water quality problems, nitrogen is the main factor lead to eutrophication. The accumulation of soil nitrogen will increase the risk of nitrogen lossing in farmland, affecting the environment quality of water. This article studied the nitrogen accumulation of different soil use types and different soil layers, and water body nitrogen pollution characteristics, results showed that:
     (1) Baoxiang River basin soil pH value is between 5.2 and 8.12, that is, the entire study area soil pH value is between the weak acid and alkaline; soil organic matter content range from 8.18 to 73.68g/kg, the scope of a large area of soil organic matter at a higher level and middle level. Baoxiang River Basin 0 ~ 10cm of soil total nitrogen content: 0.40 ~ 3.60g/kg, average: 1.94g/kg. 10 ~ 20cm of soil total nitrogen content: 0.40 ~ 3.41g/kg, average: 1.69g/kg. The total nitrogen content in soil Baoxiang was significantly higher than the nitrogen content of national average levels and Yunnan Province average levels, nitrogen content is rich.
     (2) The total nitrogen levels of 0 ~ 10cm、10 ~ 20cm soil layer were: downstream greenhouse soil﹥upstream-middle flat farmland﹥downstream flat farmland﹥upstream-middle sloping land﹥upstream sparse woodland.The results showed that the nitrogen of 0 ~ 20 cm soil in downstream greenhouse have accumulated significantly, and the overall trend is close to urban areas the average accumulation of soil nitrogen level higher than the upstream and the flat land near the Dianchi Lake. From the classification point view, the soil total nitrogen and nitrogen content of downstream and middle stream main at a high level, the soil total nitrogen and alkaline nitrogen content of upstream mainly in the intermediate level, the entire basin nitrogen content is higher.
     (3) Different levels of soil nitrogen is 0~10cm soil layer﹥10~20cm soil layer, at different levels of soil nitrogen in addition to the upstream slope of cultivated land use types other land use types are reflected 0~10cm soil layer﹥10~20cm soil layer,but nitrogen of the difference soil layer is not significant. The soil total nitrogen content of different soil use types were: downstream greenhouse soil﹥upper-middle stream flat land﹥downstream flat farmland﹥upstream slope farmland﹥upstream sparse woodland,the total nitrogen of greenhouse soil downstream and upstream sparse woodland reach to significant difference. The performance of soil alkaline nitrogen content were: downstream greenhouse soil﹥upper-middle stream flat land﹥upstream slope farmland﹥upstream sparse woodland﹥downstream flat farmland.The alkaline nitrogen content of downstream greenhouse soil with upstream sparse woodland and downstream flat farmland nitrogen content significantly different.
     (4) Baoxiang river water and drains farmland water nitrogen concentration are differences, the overall regular is the ditch water nitrogen concentration is higher than the nitrogen concentration of river water.The river water and ditch water nitrogen gradually increase from upstream to downstream.Nitrate nitrogen in water bodies is the main form of N, accounted for the proportion of total nitrogen greater than ammonia-N accounted for the proportion of total nitrogen. The overall trend of nitrogen concentration with time (June in 2008 ~ November in 2008) dynamic changes is the first rise after lower and then increased; TN, NO_3- N, NH_4 - N concentration over time shown clear signs dynamic changes.
     (5) In the study of nitrogen pollution characteristics factors of the farmland water body found: the number of rainfall during has a certain impact on the rainy season on the ditch water and nitrogen content of river.The nitrogen content of drains surrounding surface soil and ditches water nitrogen content,and ditches sediment nitrogen content and the drains between water have significant positive correlation.The drains and ditches surrounding the surface of the soil total nitrogen content of the water body correlation analysis showed that ditches and drains near the surface of the soil total nitrogen content of the water a significant positive correlation in July, and on the surrounding soil ditches and water drains associated total nitrogen content, but no significant correlation,this is just explain that rain is a major factor of nitrogen loss.
     (6)On the conditions of ditch flowing, when the ditch water concentration is higher than the concentration of river water, the ditches on farmland by the river with a load impact of nitrogen. Rainfall is an important nitrogen loss factors, rainfall after fertilizer application can increase the concentration of total nitrogen in the water drains, if the rainfall intensity to make the drains flow, then is very easy with nitrogen flow into the Dianchi Lake.
引文
[1]黄满湘,章申,张国梁.模拟人工降雨条件下对北京农田氮素流失的研究[J].地理学报,2003, 58(1):147~15.
    [2]吕耀.农业生态系统中氮素造成的面源污染[J].农业环境保护,1998,17(1):35~39.
    [3]杨金玲,张甘霖,张华.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003, 24(1):21~23.
    [4] Daniel E Line,Shmerpley AN. Lemunyon J L,Daniel TC,et al.Non-Point source water Environment Research. Agricultural phosphorus and entrophication: A symposium overview[J].Jounral of Environment Quality, 1998, 27(1):251~257.
    [5]朱兆良,文启孝.中国土壤氮素[M],江苏科学技术出版社,1990, 10.
    [6] Boer, P.C.M. Nutrien Emissions from Agriculture in the Netherlands: Callses and kmedles[J]. Water Sci.Technol. (G. B.),1996, (33) 183:22~25;
    [7] Kronvang,B. Diffese Nutrient Lossesin Denmark.Water Sci[J].T echol.(G .B ),1996, 81 (33):51~54.
    [8]金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].中国环境科学出版社,1900.
    [9]徐谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39~43.
    [10]马立珊,江祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,7(1):39~47.
    [11]胡雪峰,许世远.陈振楼,等.上海市郊中小河流氮磷污染特征[J].环境科学.2001,2 (6):66~71.
    [12]阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,2001,15(4):129~132.
    [13]陈阜.农业生态学教程[M].北京:气象出版社,1998, 94~95 .
    [14]朱兆良.我国农业生态系统中氮素的循环和平衡,见:朱兆良,文启孝,中国土壤氮素[M],南京:江苏科学技术出版社.1992: 288~303.
    [15]李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境,2002,11(4): 417~421.
    [16]李世清,李生秀.陕西夫中湿沉降输入农田生态系统中的氮素[J].农业环境保护,1999, 18 (3 ): 97~101 .
    [17]龚子同.红壤研究的土壤地球化学方向.见:中国科学院南京土壤研究所.李庆逢,我国土壤科学的发展[M].南京:江苏科学技术出版社,1992: 19~27.
    [18]李生秀,寸待贵,高亚军等.黄土旱源降水向土壤输入的氮素[J].干早地区农业研究,1993,11(增刊):83~92.
    [19]王亚丽,林位夫,陈勇.氮素使用中的污染问题及解决途径[J].热带农业科学,2003,23(1):67~73.
    [20]韦鹤平.环境系统工程.上海:同济大学出版社[M],1993: 183.
    [21] Ramos C,Agut A,Liddn AL Nitrate leaching in important crop of the Valencian Communityregion[J].Environmental Pollution,2002,118(2):215~223.
    [22]王珂,许红卫,王人潮等.应用污染模型和地理信息系统评价和管理农业非点源污染[J].环境污染与防治,1997,19(6):30~32.
    [23]晏维金,孙濮.磷、氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报1999,10(3):312~316.
    [24]张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].草地学报,2000,8(3):198~203.
    [25]于兴修,杨桂山,梁涛.土地利用对氮素流失的影响[J].农业环境保护,2002,5(4):424~427.
    [26]林清火,罗微,林钊沐等.砖红壤地区旱地土壤肥料养分淋失研究进展[J].热带农业科学, 2003,23(1):61~66.
    [27]彭习珊,我国土壤侵蚀状况与主要影响因素分析[J],洛阳农业高等专科学校学报[J],2000, 20 (2):47~48 .
    [28]马立珊,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J],环境科学学报,1997, 17(1): 39~47.
    [29]罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质, 2002, 4:66~69.
    [30] KM Hiseock,JWLloyd DN Herner.Review and Artificial Denl trification of groundwater.WatRes, 1991,25 (9): 1099~1111.
    [31] R .S hepard. Nitrogen and phosphorus management on Wisconsin farms: Lessons learned for aguricultral water qaulity programs[J]. Journal of Soil add Watershed Conservation, 2000,Vol 55,No.1:63~68.
    [32] Lai R Editor edition. Soil erosion research methods[m], Soil and Water Conservation Society lowa Ankeny, 1994, 344.
    [33]李清河,李昌哲,孙保平,等.土壤侵蚀与面源污染预测控制[J].水土保持通报,1999,19 (4).
    [34]司友斌,王慎强,陈怀满,等.农田氮、磷的流失与水体富营养化[J].土壤,2000,(4):18~124.
    [35] Boer, P.C.M. Nutrien Emissions from Agriculture in the Netherlands: Callses and kmedles. Water Sci.Technol. (G. B.),1996, (33) 183:22~25.
    [36] Kronvang,B..Diffese Nutrient Lossesin Denmark[J].Water Sci.T echol.(G .B ),1996, 81(33):51~54.
    [37]刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态学报,2003,11(1):91~93.
    [38]熊正琴,邢光熹,鹤田治雄,等.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究[J].土壤学报,2003, 4(3):704~710.
    [39]李俊然,陈利顶.土地利用结构对非点源污染的影响[J].中国环境科学,2000, 20(6):506~510.
    [40]朱建国.硝态氮污染危害与研究展望[J].土壤学报,1995,32 (增刊):62~69.
    [41]陈利顶,杨福林.异质景观中非点源污染动态变化比较研究[J].生态学报,2002,22(6):808~816.
    [42]于兴修,杨桂山,梁涛.西曹溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,2002,21(5):424~427.
    [43]王小治.太湖地区渗育性水稻土径流中磷组分的研究[J].土壤学报,2004,41(2):278~284.
    [44] Atmaram Mishra, Ghaorai, A.K, Sitr Ram Singh. Rainwater, soil and nutrient congservation in rainfed rice lands in Eastern India[J] .Agricultural water management, 1998,38:45~57.
    [45] Leg JO, MeisingerJJ.1982.Soil nitrogen budgets[M]. Stevenson FJ ed. Nitrogen in Agricultural Soils Am Sco A gron Madison Wis A gron.22:503~566.
    [46]刘培斌,程伦国.排水条件下稻田中氮素运移转化规律的试验研究[J].农田水利与小水电,1999.4:15~20.
    [47]宋玉芳,任丽萍.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志,2001,20(6): 20~24.
    [48]刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态农业学报2003,11(3).91~93.
    [49]王德建.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426~432.
    [50]连纲,王德建,林静慧.太湖地区稻田土壤养分淋洗特征应用[J].生态学报,2003,14(11). 1879~1883.
    [51]宋玉芳,任丽萍,许华夏.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志,2001,20(6):20~24.
    [52]刘培斌,张瑜芳.稻田中氮素流失的田间试验与数值模拟研究[J].农业环境保护,1999.18(6):241~245.
    [53] Man Singh,Bhattacharya,A.K,Nair.Nitrogen Loss through subsurface drainage effluent in coastal rice form India[J]. Agricultural water management, 2002,52:249~206.
    [54]王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究[J].土壤学报, 1996,33(1):28~36.
    [55]朱兆良,陈得立,张绍林,等.稻田非共生固氮对当季水稻吸收氮的贡献[J].土壤,1986,(5):225~229.
    [56]蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32 (增刊):128~134.
    [57]边秀举,王维进,杨福存,等.冀北高原草甸栗钙土春小麦中化肥氮去向的研究[J].土壤学报,199734(1):60~65.
    [58]曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001:16( 2):83~86.
    [59]蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32 (增刊):128~134.
    [60] Bakhsh,A.,Kanwar,RS.,et al. PREDICTION OF NO3-N losses with subsurface draingwater from manuured and UAN-fertilized plots using GLEMS.Trans.Am.Soc. Agric.Eng,2000,43:69~78.
    [61]沈晋,沈冰,李怀恩.环境水文学[M].合肥:安徽出版社,1992.
    [62] Young,R.A.AGNPSA nonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation,1989,3(4).
    [63]李怀恩.非点源污染数学模型[M].陕西:西北工业大学出版社,1996.
    [64]刘培斌,张瑜芳.流网和一维动力学模型相结合模拟麦田暗管派水地段氮肥的流失[J].水利学报,1999. (11):27~37.
    [65]徐向阳,刘俊.农业区氨氮流失模型.环境污染与防治[J].1999,21(4):34~37.
    [66]于苏俊,高平平,何政伟.基于GRS平台的农业非点源污染研究[J].西南交通大学学报, 2002,37(5):593~569.
    [67]张水龙,庄季屏.分散型流域农业非点源污染模型研究.干早区资源与环境[J].2003,17 (5):76~80.
    [68]邢可霞,郭怀成,孙延枫等.基于HSPF模型的滇池流域非点源污染模拟[J].中国环境科学,2004, 2(24):229~232.
    [69]王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM[J].浙江大学学报,2003.29(1):67~70.
    [70]谢秋发,刘经荣,石庆华,等.不同施肥方式对水稻高产、吸氮特征和土壤氮转化的影响[J].植物营养与肥料学报, 2004,10(5):426~467.
    [71]陈新平,周金池,王新仁,等.小麦—玉米软作制中氮肥效应模型的选择[J].经济和环境效益分析. 2000.37(3):346~352.
    [72] Wiedenfeld R P. Rate timing and slow release nitrogen fertilizerson cabbage and onions[J]. Hort Science,1986,21:236~238.
    [73]高效江,胡学峰,王少平,等.淹水稻田中氮素损失及其对水环境影响的试验研究[J].农业环境保护,2001,20(4):196~198.
    [74]高效江,胡雪峰.减少稻田氮素损失的水肥管理措施研究[J].土壤,2002,34(4)215~218.
    [75]曹向东,王宝贞,蓝云兰,等.强化塘—人工湿地复合生态系统中氮和磷的去除规律[J].环境科学研究.2002.13(2):15~19.
    [76]甘海华,彭凌云.江门市新会区.耕地土壤养分空间变异特征[J].应用生态学报,2005,8(8):1437~1442.
    [77]黄昌勇.土壤学[M].北京:中国农业出版社,2000,32~49.
    [78]李文芳,杨世俊,文池夫.土壤有机质的环境效应[J].环境科学动态,2004,(4):31~33.
    [79]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178~182.
    [80]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999,65~132.
    [81]胡克林,李保国,林启美,等.农田土壤养分的空间变异性研究[J].农业工程学报,1999,15(3):33~38.
    [82]徐尚平,陶澍,曹军.内蒙古土壤pH值、粘粒和有机质含量的空间结构特征[J].土壤通报,2001,32(4):145~148.
    [83]杨玉玲,田长彦,盛建东,等.灌淤土壤有机质、全量氮磷钾空间变异性初探[J].干旱地区农业研究,2002,20(3):26~30.
    [84]姜勇,张玉革,梁文举,等.沈阳市苏家屯区耕层土壤养分空间变异性研究[J].应用生态学报,2003,14(10):1673~1676.
    [85]程先富,史学正,于东升,等.江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J].应用与环境生物学报,2004,10(1):64~67.
    [86]李晓燕,张树文,王宗明,等.吉林省德惠市土壤特性空间变异特征与格局[J].地理学报,2004,59(6):989~997.
    [87]王彩绒,吕家珑,胡正义,等.太湖流域典型蔬菜地土壤氮及pH空间变异特征[J].水土保持学报,2005,19(3):17~19.
    [88]甘海华,彭凌云.江门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,16(8):1437~1442.
    [89]路鹏,黄道友,宋变兰,等.亚热带红壤丘陵典型区土壤全氮的空间变异特征[J].农业工程学报,2005,21(8):181~183.
    [90]赵彦锋,史学正,于东升,等.小尺度土壤养分的空间变异及其影响因素探讨—以江苏省无锡市典型城乡交错区为例[J].土壤,2006,37(2):214~218.
    [91]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异的尺度性研究[J].农业工程学报,2005, 21( 8):11~16.
    [92]王红,宫鹏,刘高焕.黄河三角洲多尺度土壤盐分的空间分异[J].地理研究,2006,25(4):649~658.
    [93]盛建东,肖华,武红旗.不同取样尺度农田土壤速效养分空间变异特征初步研究[J].干旱地区农业研究,2005,23(2):63~67.
    [94]姚丽贤,周修冲,蔡永发.不同采样密度下土壤特性的空间变异特征及其推估精度研究[J].土壤,2004,36(5):538~542.
    [95]冯娜娜,李廷轩,张锡洲,等.不同尺度下低山茶园土壤有机质含量的空间变异[J].生态学报,2006 26(2):349~356.
    [96]刘世梁,郭旭东,连纲,等.黄土高原土壤养分空间变异的多尺度分析—以横山县为例[J].水土保持学报,2005, 19(5):105~108.
    [97]燕惠民,肖顺勇,谭济才.南方农村环境现状与清洁建设探讨[J].环境卫生工程,2004,12(1): 40~42.
    [98]吕小玲,徐清艳.滇池污染现状、趋势及其综合防治对策[J].闽江学院学报,2002,23(2):108~112.
    [99]张乃明,余扬等.滇池流域农田土壤径流磷污染负荷影响因素[J].环境科学,2003,24(3):155~157.
    [100] Walter M.T.,Parlange J.Y..Modeling pollutant release from a surface source during rainfall runoff[J]. Environment Oua1ity,2001,30:151~159.
    [101] WiHiam H.S.,Athol D.A,Anthony J.P,et a1.Nutrient losses in runoff from grassland and Shrub land habitats in southern New Mexico. Rainfall simulation experiments.Biogeochemistry,1999, 45:21~34.
    [102]吴德玲,滇池富营养化成因分析[J].环境科学研究,1992,5(5):26~28.
    [103]张宇,张荣社.滇池东岸暴雨径流特征分析[J].云南环境科学,2006, 2(23):19~22.
    [104]刘忠翰,贺彬,王宜明等.滇池不同流域类型降雨径流对河流氮磷入湖总量的影响[J].地理研究,2004,23(5):593~604.
    [105]段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究[J].土壤,2005, 37(1):48~51.
    [106]石峰等,杜鹏飞,张大伟,等.滇池流域大棚种植区面源污染模拟[J].清华大学学报:(自然科学版),2005,45(3):363~366.
    [107]金相灿,辛玮光,卢少勇.入湖污染河流对受纳湖湾水质的影响[J].环境科学研究,2007,20(4):52~57.
    [108]赵磊,袁国林,张琰,等.基于GIS和USL E模型对滇池宝象河流域土壤侵蚀量的研究[J].水土保持通报,2007,27 (3 ):42~46.
    [109]齐鑫,陈利顶,李琪,等.传统农业区土地利用对土壤氮素季节动态变化的影响—以官厅水库上游延庆盆地为例[J].生态环境,2007,1 6(2):564~568.
    [110]段蕙敏,张乃明,张玉娟.施肥对滇池流域农田土壤氮流失的影响[J].水土保持研究,2004,11(3):243~245.
    [111]张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].草地学报,2000,8(3):198~203.
    [112]黄云凤,张珞平,洪华生,等.小流域氮流失特征及其影响因素[J].水利学报,2006,37(7):801~805.
    [113]梁文举,施春健,姜勇.长期定位试验地耕层土壤氮素空间变异性及其应用[J].水土保持学报,2005,19(1):79~83.
    [114]肖鹏飞,张世熔,邓良基,等.成都郫县土壤氮素养分在城市化进程中的时空变异特征[J].四川农业大学学报,2005,23(1):80~84.
    [115]常娟,王根绪.黑河流域不同土地利用类型下水体N,P质量浓度特征与动态变化[J].兰州大学学报,2005, 41( 1): 1~7.
    [116]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6~10.
    [117] Hatch D J,arvis S C,arkinson R J.Concurrent measurements of net mineralization nitrification, Denitrification and leaching from field incubated soil cores[J].Biology and Fertility of Soils,1998, 26(4):323~330.
    [118]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000,21(6):16~19.
    [119]陆敏,刘敏,茅国芳,等.大田条件下土壤氮素淋失研究[J].华东大学学报,2006,4:71~75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700