用户名: 密码: 验证码:
维生素C棕榈酸酯泡囊和固体脂质纳米粒作为维A酸经皮给药载体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以维生素C棕榈酸酯泡囊和固体脂质纳米粒作为维A酸经皮给药载体,对其处方组成、制备工艺、包封率、稳定性、释放度、体外皮肤渗透性和皮肤贮留进行研究。期望通过这两种新型微粒给药系统用于皮肤局部给药,提高维A酸的稳定性,同时使更多的药物贮留在皮肤内,以增加局部药物浓度减少系统吸收。
     方法:(1)维A酸维生素C棕榈酸酯泡囊和固体脂质纳米粒的制备。采用溶剂注入法制备维A酸维生素C棕榈酸酯泡囊,并进行了处方优化,采用透析法测定包封率。采用纳米乳法制备维A酸固体脂质纳米粒,通过相图研究确定处方组成,采用葡聚糖G50微型凝胶测定包封率。
     (2)维A酸维生素C棕榈酸酯泡囊和固体脂质纳米粒的稳定性研究。稳定性研究中考查了维A酸维生素C棕榈酸酯泡囊和固体脂质纳米粒在光照(4500±500 lx)下药物降解的情况;以药物含量和包封率为指标,考查了泡囊在4℃和25℃,相对湿度75%,贮存6个月的稳定性;以药物含量、粒径、电位和包封率为指标考查了固体脂质纳米粒在4℃、25℃和40℃,相对湿度75%,贮存3个月的稳定性。
     (3)维A酸维生素C棕榈酸酯泡囊和固体脂质纳米粒的体外释放度、皮肤渗透性和皮肤贮留的研究。用Franz扩散池测定维A酸从载体中的释放速度。扩散池与供给池之间为纤维素膜(截留分子量8000~14000),扩散池面积为2.92cm2。在第2、4、6、8、12、24h定时取样0.5ml,并补充等量新鲜介质,样品处理后用HPLC测定。体外经皮渗透试验同释放度,用小鼠、大鼠或家兔背部皮肤替代半透膜。皮肤贮留则在体外经皮渗透试验完结后,取下皮肤,剪碎匀浆,用50%异丙醇-生理盐水提取,提取液处理后用HPLC测定药物浓度。
     结果:(1)维A酸维生素C棕榈酸酯泡囊优化处方及工艺。取0.1g L-半胱氨酸盐酸盐和0.05g EDTANa2溶于100ml PBS (pH 5.5)中,作为Ⅰ相;再取0.1g维A酸、2.1g维生素C棕榈酸酯、1.9g胆固醇和0.02g 2,6-二叔丁基对甲基苯酚加25ml乙醇-乙醚(3:2)完全溶解,作为Ⅱ相;1000r·min-1搅拌下将Ⅱ相慢慢滴至60℃的Ⅰ相中;滴毕后,继续60℃保温搅拌30min,去除有机溶剂,然后停止加热,继续搅拌30min。控制最终体积为100ml,即得。采用透析法测定其包封率>90%。4℃贮存6个月含量无明显变化,包封率略有下降;25℃贮存6个月含量和包封率有一定程度下降。
     (2)维A酸固体脂质纳米粒优化处方及工艺。取0.5g单硬脂酸甘油酯、0.2g司盘60、4g吐温80、5g聚乙二醇400、0.04g维生素C棕榈酸酯、1g泊洛沙姆F-127、0.04g 2,6-二叔丁基对甲基酚,置70℃水浴加热使其熔化。在70℃,200r·min-1搅拌条件下加入0.025g维A酸,继续搅拌10min使维A酸完全溶解,得澄清透明黄色溶液。然后加入15ml,70℃的水,于200r·min-1搅拌20min,形成稳定均一乳液。然后将乳液倒入以1000r·min-1搅拌的78ml,2℃含0.01g EDTA的水中,搅拌5min后转速调至200r·min-1,搅拌2h,即得。采用葡聚糖G50微型凝胶测定包封率>92%。4℃、25℃和40℃贮存3个月,含量和包封率均无明显变化。
     (3)释放速度、体外皮肤渗透性及皮肤贮留。释放度表明维A酸维生素C棕榈酸酯泡囊释放速度大于市售乳膏和维A酸固体脂质纳米粒。小鼠体外经皮渗透试验表明泡囊中维A酸累积经皮透过量高于市售乳膏和固体脂质纳米粒,但皮肤贮留量固体脂质纳米粒高于市售乳膏和泡囊。比较泡囊和固体脂质纳米粒在小鼠、大鼠及家兔皮肤的体外皮肤透过性,结果小鼠>大鼠>家兔。比较泡囊和固体脂质纳米粒在小鼠、大鼠及家兔皮肤的贮留量,结果家兔>大鼠>小鼠。
     结论:采用注入法制备维A酸维生素C棕榈酸酯泡囊和纳米乳法制备维A酸固体脂质纳米粒,方法简单易行,优化处方的制品包封率均大于90%。稳定性方面脂质纳米粒优于泡囊。泡囊体外释放速度快,体外累积经皮透过量大于市售乳膏和固体脂质纳米粒,说明泡囊有增加药物经皮渗透作用。固体脂质纳米粒体外释放速度慢,皮肤贮留量大于市售乳膏和固体脂质纳米粒,说明其有助于增加局部药物浓度。泡囊和固体脂质纳米粒小鼠背部皮肤累积经皮渗透量高于大鼠和家兔,而皮肤贮留量低于大鼠和家兔。
Objective: Use ascorbyl palmitate vesicles and solid lipid nanoparticles as transdermal administration carrier for tretinoin, carry out studies on their formulation, preparation technology, entrapment efficiency, stability, release, in vitro skin penetration and retention .Expecting to improve the stability of tretinoin and increase the local concentration of drug when transdermal administration.
     Methods: (1)Study on the preparation of tretinoin ascorbyl palmitate vesicles and solid lipid nanoparticles. Prepare tretinoin ascorbyl palmitate vesicles by solvent-injection method, and optimize the formulation of vesicles, entrapment efficiency was determinated by dialysis method. Prepare tretinoin solid lipid nanoparticles by nanoemulsion method, formulation determined through study on phase diagram and entrapment efficiency was determinated by Sephadex G50 mini-column.
     (2) Study on the stability of tretinoin ascorbyl palmitate vesicles and solid lipid nanoparticles. In the study of stability, we examen degradation of drug loaded in ascorbyl palmitate vesicles or solid lipid nanoparticles when exposure to illumination(4500±500 lx). The tretinoin ascorbyl palmitate vesicles were stored two different temperatures(4℃, 25℃) and relative humidity 75% for 6 mouths to carry through testing of stability, drug content and entrapment efficiency were measured. The solid lipid nanoparticles were stored three different temperatures(4℃, 25℃, 40℃) and relative humidity 75% for 3 mouths to carry through testing of stability, drug content, particle size , potential and entrapment efficiency were measured.
     (3) Study on the release rate, in vitro skin penetration and retention of tretinoin ascorbyl palmitate vesicles and solid lipid nanoparticles. The in vitro release rate of tretinoin from carrier was determined by Franz diffusion cell. Between donor compartment and receptor compartment was cellulose membrane(cut-off molecules 8000~14000 ), the avaiable diffusion area of cell was 2.92 cm2. At appropriate intervals, namely, 2,4,6,8,12,24h, 0.5ml of the receptor medium were withdrawn and replaced by an equal volume of fresh receptor solution immediately. The sample was analyzed by HPLC after treatment .The in vitro skin penetration experiment was carry through by the same method as the in vitro release rate experiments except using the back skin of mouse, rats or rabbits instead of cellulose membrane. When in vitro skin penetration experiment completed, the skin were taken down from cells, cut and homogenated. After these treatment, extracted by 50% isopropanol-normal saline. The extracting solution was analyzed by HPLC after treatment .
     Results: (1)Optimized formulation and preparation technology of tretinoin ascorbyl palmitate vesicles. 0.1g 1-cysteine hydrochloride and 0.05g EDTANa2 dissolved in 100ml PBS (pH 5.5), as phaseⅠ;0.1g tretinoin, 2.1g ascorbyl palmitate, 1.9g cholesterol and 0.02g BHT dissolved in ethanol-ether(3∶2), as phaseⅡ. PhaseⅡdrop into phaseⅠwhich heated to 60℃slowly at 1000r·min-1 stirring, after dropped, keep stirring 30min at 60℃in order to remove organic solvents, then stop heating and contuniue stirring 30min. The final volume was controlled to 100ml and the vesicles were obtained. The entrapment efficiency was over 90% and determinated by dialysis method . The products have no significant decrease on content and entrapment efficiency when stored at 4℃environment for 6 months but have some decrease when stored at 25℃environment.
     (2)Optimized formulation and preparation technology of tretinoin solid lipid nanoparticles. 0.5g glycerin monostearate, 0.2g span60, 4g tween80, 5g PEG400, 0.04g ascorbyl palmitate,1g poloxamer F-127, 0.04g butylated hydroxytoluene, mixed and melted in 70℃water bath heating to form a clear solution. Then 0.025g tretinoin was added to this solution at 70℃and 200r·min-1 stirring until it was complete dissolved and another yellow clear solution was obtained. After that 15ml, 70℃water was added to this solution and stirred at 200r·min-1 for 20min to form a stable nanoemulsion. Then pour the nanoemulsion into 78ml, 2℃water(contains 0.01g EDTA) with 1000r·min-1 stirring. The stirring speed reduced to 200r·min-1 after 5min and keep this speed for 2h, and the nanoparticles were obtained. The entrapment efficiency was over 92% and determinated by Sephades G50 mini-column. The products have no significant decrease on content and entrapment efficiency when stored at 4℃, 25℃and 40℃environment for 3 months.
     (3) Release rate, in vitro skin penetration and retention. The in vitro release rate of tretinoin ascorbyl palmitate vesicles was higher than cream and tretinoin solid lipid nanoparticles. The in vitro tretinoin cumulative penetration quantity indicated higher levels in ascorbyl palmitate vesicles than cream and solid lipid nanoparticles in mouse back skin, but solid lipid nanoparticles had more drug retention in mouse back skin than cream and ascorbyl palmitate vesicles . The result of diffierent animal back skin cumulative penetration quantity of vesicles and solid lipid nanoparticles was mouse>rats>rabbits. The result of diffierent animal back skin retention quantity of vesicles and solid lipid nanoparticles was rabbits >rats> mouse.
     Conclusions: Prepare tretinoin ascorbyl palmitate vesicles by solvent-injection method and tretinoin solid lipid nanoparticles by nanoemulsion method were simple and reliable. The entrapment efficiency of optimized formulation were over 90%. Solid lipid nanoparticles had better stability than vesicles. Vesicles had higher in vitro release rate and in vitro cumulative penetration quantity than cream and solid lipid nanoparticles, this indicated vesicles can increase the skin penetration quantity of drugs. Solid lipid nanoparticles had lower in vitro release rate than cream and vesicles but had the highest skin retention quantity, this indicated solid lipid nanoparticles can increase local concentration of drugs. Back skin cumulative penetration quantity in vitro of vesicles and solid lipid nanoparticles in mouse was higher than that from rats and rabbits. on the contrary, back skin retention quantity in vitro of vesicles and solid lipid nanoparticles in mouse was lower than rats and rabbits.
引文
[1]彭振辉, 牛新武. 维 A 酸类药物与皮肤病[J]. 中国皮肤性病学杂志, 2004, 18(6): 374-378.
    [2]唐跃年, 胡松浩, 孙朝荣, 等. 全反式维甲酸的药理学特点[J]. 医药导报, 2002, 21(6): 381-382.
    [3]BRISAERT MG,EVERAERTS I,PLAIZIER-VERCAMMEN J.Chemical stability of tretinoin in dermatological preparations[J].Pharm Acta Helv,1995,70:161-166.
    [4]张敬如, 黄复生, 王 昆. 全反式维甲酸脂质体制备及稳定性研究[J]. 第三军医大学学报, 2006, 28(8): 807-809.
    [5]MANCONI M, SINICO C, VALENTI D, et al. Niosomes as carriers for tretinoinⅡ . Influence of vesicular incorporation on tretinoin photostability [J]. Int J Pharm, 2003, 260(2): 261-272.
    [6]曹炳军. 维甲酸-β-环糊精包合物的制备研究[J]. 中国药业, 2001, 10(3): 40-41.
    [7]李欣玮,孙立新,林晓宏,等.固体脂质纳米粒作为药物载体[J].化学进展,2007,19(1):87-93.
    [8]GOPINATH D, RAVI D, RAO BR, et al. Ascorbyl palmitate vesicles(Aspasomes): formation, characterization and applications [J]. Int J Pharm, 2004, 271(1-2):95-113.
    [9]王红勇, 陶桂全. 抗坏血酸棕榈酸酯对油脂的抗氧化效果观察[J]. 中国畜产与食品, 1997, 4(5): 200-201.
    [10]GADRAS C, SANTAELLA C, VIERLING P, Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts [J]. J Controlled Release , 1999, 57(1):29-34.
    [11]杜美菊,凌翠霞,李娜,等.类脂囊泡包封药物顺铂的研究[J].化学研究, 2006, 17(2):71-73.
    [12] 蔡明志,黄复生,王昆.维甲酸脂质体的制备及评价[J].中国新药杂志, 2006, 15(14):1181-1183.
    [13]王影, 李京京, 陆兵.固体脂质纳米粒的制备及应用研究进展[J].生物技术通讯, 2006, 5(17):471.
    [14]周华锋, 马全红, 夏强, 等.咪喹莫特固体脂质纳米粒的制备及其性能研究[J].中国药学杂志,2006, 41 (14):1088.
    [15]曹会兰,杨建武.L-抗坏血酸棕榈酸酯的合成及应用[J].西北农林科技大学学报,2003,31(5):121-122.
    [16]REDZINIAK G. Liposomes and skin: past, present, future[J].Pathol Biol,2003 ,51(5):279.
    [17]徐秋兰,庞杰. 辣椒化学成分的开发利用[J].中国辣椒,2003,(1): 32-35.
    [18]李克安,李娜,赵凤林,等.非离子表面活性剂囊泡包封药物头孢唑啉钠的研究[J].化学通报,2002,(7): 467-471.
    [19]AMDIDOUCHEA D,DARROUZETB H,DUCHêNEC D ,et al. Inclusion of retinoic acid in β-cyclodextrin [J]. Int J Pharm,1989,54:175-179.
    [20]张惠宏,胡富强,袁弘,等.溶剂扩散法制备丙酸倍氯米松固体脂质纳米粒[J].药学学报,2003,38(4): 302-306.
    [21]李厚丽,翟光喜.固体脂质纳米粒的制备与应用研究进展[J].中南药学,2006,4(5):366-369.
    [22]王 影,宦定才,陆 兵.固体脂质纳米粒的特点及存在问题[J].解放军药学学报,2006,22(1):51-54.
    [23]周华锋,马全红,夏强,等.咪喹莫特固体脂质纳米粒的制备及其性能研究[J].中国药学杂志,2006,41(14):1084-1089.
    [24]倪倩,丁虹,刘洁,等.咪喹莫特固体脂质纳米粒的制备及体外透皮作用[J].中国医药工业杂志,2006, 37(8):537-540.
    [25]CAVALLI R, GASCO MR, CHETONI P,et al.Solid lipid nanoparticles(SLN)as ocular delivery system for tobramycin[J].Int J Pharm,2002,238:241-245.
    [26]LIM SJ , KIM CK . Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid[J].Int J Pharm,2002,243:25-146.
    [27]LIPPACHER A,MüLLER RH,Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles.Int J Pharm,2001,214:9-12.
    [28]DOMB AI.Long acting injectable cytel palmitate liposphere formulation[J].Int JPharm,1995,124(6):227-278.
    [29]MüLLER RH,HERNEMANN S.Fat emulsion for parenteral nutritionⅢ lipofundin MCT/LCT regimens for parenteral nutrition(TPN)with low electrolyte load[J].Int J Pharm,1994,101(3):175-189.
    [30]JENNING V , GOHLA S. Comparision of wax and glyceride solid lipid nanoparticles(SLN)[J].Int J Pharm,2000,196(4) :219-222.
    [31]张桓,张强,齐宪荣.胰岛素脂质体的结构特点[J].药学学报,2001,36(6):448-451.
    [32]高晓黎,季兴梅.葡聚糖凝胶柱层析法测定脂质体包封率的方法探讨[J].中国药学杂志,2003,38(7):515-517.
    [33]DUBEY V,MISHRAA D,JAINA NK. Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery[J].Eur J Pharm Biopharm,2007,67(2):398-405.
    [34]EL MAGHRABY GM, WILLIAMS AC, BARRY SW. Skin delivery of 5-fluorouracil fromultradeformable and standard liposomes in-vitro[J] . J Pharm Pharmacol,2001,53:1069.
    [35]洪彗,龙晓英,李力任,等.葡聚糖微型凝胶柱测定辣椒碱柔性脂质体包封率的条件探讨[J].广东药学院学报,2005,21(2):120-124.
    [36]王福霞,冯文菊,姜武民.HPLC 法测定维 A 酸与异维 A 酸含量[J].药物分析杂志,2007,27(4):585-587.
    [37]徐莲琴,徐晓弘,李丙阳.RP-HPLC 法测定迪维霜和维 A 酸凝胶中维 A 酸的含量[J].药物分析杂志,2002,22(4):323-325.
    [38]汪 涛,邓树海,万发里,等.维 A 酸注射液的含量及有关物质的 HPLC 测定[J].中国医药工业杂志,2006,37(10):700-702.
    [39]丁志文,贾继章,李丽.影响硫化钠脱毛各因素的研究[J].中国皮革,2004,33(1):19-22.
    [40]余建强,闫琳,郑萍.实验动物脱毛剂的改良与应用[J].宁夏医学院学报,2001,23(4):296-297.
    [41]蒋新国,奚念朱.维 A 酸的反相高压液相色谱测定法[J].中国药理学报,1994,15(5):458-461.
    [42]MANCONI M, SINICO C, Valenti D , et al . Niosomes as carriers for tretinoinⅠ.Preparation and properties[J]. Int J Pharm,2002, 234(1-2):237-248.
    [43]PALMA S, LO NOSTRO P, Manzo R, et al.Evaluation of the surfactant properties of ascorbyl palmitate sodium salt[J].Eur J Pharm Sci,2002,16(1):37-43.
    [44]SINGH M, CHAKRAPANI A, O'HAGAN D.Nanoparticles and microparticles as vaccine-delivery systems[J].Expert Rev Vaccines,2007,6(5):797-808.
    [45]KOHANE DS.Microparticles and nanoparticles for drug delivery[J].Biotechnol Bioeng,2007, 96(2):203-209.
    [46]MüLLER RH, RUNGE S,RAVELLI V,et al.Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals[J].Int J Pharm,2006,317(1):82-89.
    [47]YANG S,ZHU J,LU Y,et al. Preparation and characterization of camptothecin solid lipid nanoparticles [J].Drug Dev Ind Pharm,2002,28(3):265-274.
    [48]ARAYA H,NAGAO S, TOMITA M,et al. The novel formulation design of self-emulsifying drug delivery systems (SEDDS) type O/W microemulsion I: enhancing effects on oral bioavailability of poorly water soluble compounds in rats and beagle dogs[J].Drug Metab Pharmacokinet,2005,20(4):244-56.
    [49]沈海蓉,李中乐,钟明康,等.微乳化释药系统及其制剂的研究进展[J].中国新药与临床杂志,2005,24(5):409.
    [50]赵锦花,许世信,孙多先.水飞蓟宾微乳制剂的制备[J].天津大学学报,2006,39(7):39-41.
    [51]JACOBS C,KAYSER O,MüLLER RH.Production and characterization of mucoadhesive nanosuspensions for the formulation of bupravaquone. Int J Pharm,2001,214(1-2):3-7.
    [52]张磊,平其能,郭健新,等.口服胰岛素纳米脂质体的制备及其降血糖作用[J].中国药科大学学报,2001,32(1):25-29.
    [53]MANJUNATH K,REDDY JS,VENKATESWARLU.Solid lipid nanoparticles as drug delivery systems[J].Methods Find Exp Clin Pharmacol,2005,27(2):127-144.
    [54]李立民,陈庆华.紫杉醇 PLA-PEG 嵌段共聚物纳米粒腹腔注射的组织分布[J].中国医药工业杂志,2007,38(3):185-190.
    [55]REDDY LH,ADHIKARI JS,DWARAKANATH BS,et al.Tumoricidal effects of etoposide incorporated into solid lipid nanoparticles after intraperitoneal administration in Dalton's lymphoma bearing mice[J].The AAPS Journal,2006,8(2):254-262.
    [56]WONG HL, RAUTH AM, BENDAYAN R, et al.In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model[J].Eur J Pharm Biopharm,2007,65(3):300-308.
    [57]GUPTA Y, JAIN A, JAIN SK.Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain[J].J Drug Target, 2007,5(6):407-16.
    [58]XIANG QY, WANG MT, CHEN F, et al.Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles[J]. Arch Pharm Res,2007,30(4):519-25.
    [59]朱艳,鲁莹,钟延强.胸腺肽 α1 缓释注射微球的研究[J].药学学报,2007,42(2):211-215.
    [60]YOU J, WAN F, CUI FD, et al.Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles[J].Int J Pharm,2007,343(1-2):270-276.
    [61]HAO YL,DENG YJ,CHEN Y,et al.In-vitro cytotoxicity,in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan[J].J Pharm Pharmacol,2005,57(10):279-1287.
    [62]张华,齐宪荣,张强.柔红霉素长循环脂质体的药剂学性质及大鼠体内药代动力学研究[J].药学学报,2002,37(4):299-303.
    [63]MOSQUEIRA VC, LEGRAND P, MORGAT JL, et al . Biodistribution of long-circulating PEG-grafted nanocapsules in mice:effects of PEG chain length and density[J].Pharm Res, 2001 ,18(10) :1411-1419.
    [64]郭涛,储晓琴,宋洪涛,等.静脉注射用大蒜油亚微乳的制备[J]. 中国药学杂志,2005,40(8):602-605.
    [65]HWANG SR,LIM SJ,PARK JS,et al.Phospholipid-based microemulsion formulation of all-trans-retinoic acid for parenteral administration[J].Int J Pharm,2004,276(1-2):175-183.
    [66]ZHAO X,CHEN D,GAO P,et al.Synthesis of ibuprofen eugenol ester and its microemulsion formulation for parenteral delivery[J].Chem Pharm Bull,2005,53(10):1246-1250.
    [67]MIMA CS,MEHNERT W,SCHAFER-KORTING M.Solid lipid nanoparticles as drug carriers for topical glucocorticoids[J].Int J Pharm,2000,196(2):165-167.
    [68]刘卫,朱姚亮,陈华兵,等.醋酸曲安奈德固体脂质纳米粒卡波姆凝胶的性能及经皮给药研究[J].中国药学英文版,2005,14(1):18-24.
    [69]PREM NG,VIVEK M,AMIT R,et al.Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study[J].Int J Pharm,2005,293:73-82.
    [70]SUBHEET J,PHARM M,PARIJAT J,et al.Transfersomes-A Novel Vesicular Carrier for Enhanced Transdermal Delivery : Development , characterization , and Performance[J]. Evaluation Drug Dev Ind Pharm,2003,29(9):1013-1026.
    [71]MARIA M,CHIARA S,DONATELLA V,et al.Niosomes as carriers for tretinoin III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin[J].Int J Pharm,2006,311(1-2):11-19.
    [72]NING M, GUO Y, PAN H, et al.Preparation and characterization of EP-liposomes and Span 40-niosomes[J].Pharmazie,2006,61(3):208-12.
    [73]CHOI MJ, MAIBACH HI.Liposomes and niosomes as topical drug delivery systems[J].Skin Pharmacol Physiol,2005,18(5):209-219.
    [74]陈彤,侯世祥,孙毅毅,等.盐酸米托蒽醌脂质体制备及其经皮吸收分布规律的研究[J].四川大学学报:医学版,2006,37(6):934-937.
    [75]JOSHI M, PATRAVALE V . Nanostructured lipid carrier (NLC) based gel of celecoxib[J].Int J Pharm,2007,340(1-2):143-52.
    [76]WISSING SA.MüLLER RH.Solid lipid nanoparticles as carrier for sunscreens:in vitro release and in vivo skin penetration[J].J Control Release,2002,81(2):225-233.
    [77]CHEN H,CHANG X,WENG T,et al.A study of microemulsion systems for transdermal delivery of triptolide[J].J Controlled Release,2004,98(3):427-436.
    [78]FIALHO SL,DA SILVA-CUNHA A.New vehicle based on a microemulsion for topical ocular administration of dexamethasone[J].Clin Experiment Ophthalmol,2004,32(6):626-632.
    [79]ADIBKIA K,SIAHI SHADBAD MR,NOKHODCHI A,et al.Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis[J].J Drug Target,2007,15(6):407-16.
    [80]王凤翔,何守志,李新建.眼用海藻酸钠-维甲酸微球药物代谢动力学的实验研究[J].中华眼科杂志,2006,42(9):814-817.
    [81]VYAS TK , BABBAR AK , SHARMA RK , et al . Intranasal mucoadhesive microemulsions of clonazepam:preliminary studies on brain targeting[J].J Pharm Sci,2006,95(3):570-580.
    [82]程巧鸳,李范珠.神经毒素纳米粒大鼠鼻腔给药的脑药物动力学研究[J].中国药科大学学报,2007,38(1):77-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700