用户名: 密码: 验证码:
城市下水道和化粪池气体爆炸风险评估与预警机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下水道和化粪池是城市必不可少的基础设施。近年来,全国许多城市都先后发生过严重的下水道和化粪池爆炸事故,严重威胁着人民生命和财产安全。因此开展城市下水道和化粪池气体爆炸风险评估及预警机制方面的研究对保障城市基础设施安全以及城市公共安全十分重要。
     本论文针对重庆市城市下水道和化粪池气体爆炸事故频发、安全隐患严重等问题,通过现场调研与数据收集,对比分析已发生气体爆炸事故与已有监控系统报警的时间及地域分布特征和可燃气体浓度变化特征,从机理上研究可燃气体的积聚现象,分析气体爆炸诱因,构建了城市下水道和化粪池气体爆炸风险评估模型,提出了气体爆炸预警模式,可为城市下水道和化粪池按风险级别分级管理,以及提高预警系统的安全性和有效性提供技术依据。主要得到了以下结论:
     ①通过分析可燃气体浓度变化规律及可燃气体积聚机理,发现下水道和化粪池内可燃气体存在三种积聚结果:稳定状态、扰动状态和聚集状态。并筛选出HRT(水力停留时间)、管道内污泥沉积状态、相邻化粪池排气条件、外源性可燃气体泄露概率是影响下水道内可燃气体积聚的主要因素;化粪池排气条件、负荷状态、外源性可燃气体泄露概率是影响化粪池内可燃气体积聚的主要因素。压力和流量的变化是影响下水道和化粪池内可燃气体浓度变化的主要因素。
     ②根据风险评估理论,建立了城市下水道和化粪池气体爆炸半定量风险评估模型。城市下水道和化粪池气体爆炸风险是可燃气体积聚可能性与爆炸后果的综合体现。通过建立风险评估指标体系,将可燃气体积聚可能性等级(L)与爆炸后果等级(C)分别分为五个级别,并建立半定量风险矩阵。气体爆炸风险值R为L与C的乘积,根据风险值R在半定量风险矩阵中的区域将气体爆炸风险确定为重度风险、中度风险及轻度风险三个级别。对确定为重度风险级别的下水道和化粪池,应建立可燃气体在线监控系统。这种半定量评价的方法比较灵活,可解决缺乏安全风险基准标准的问题。管理人员可根据具体要求,调整半定量风险矩阵图中三个风险等级所对应的风险值R的区域,确定应按重度风险级别管理的对象,从复杂繁多的下水道和化粪池中筛选出重点监控对象。
     ③通过诱因分析,构建了城市下水道和化粪池气体爆炸风险评估指标体系,并通过专家调查法和层次分析法,确定了各指标的权重系数。下水道内可燃气体积聚可能性等级评价指标包括:平均水力停留时间指数、检查井内管网交汇指数、外源性气体聚集指数,其权重系数分别为:0.304、0.145、0.551;下水道气体爆炸后果等级评价指标包括:所在区域人口密度分值、次生灾害可能性分值,其权重系数分别为:0.804、0.196。化粪池内可燃气体积聚可能性等级评价指标包括:化粪池容积指数、化粪池负荷指数、外源性气体聚集指数,其权重系数分别为:0.150、0.619,0.231;化粪池气体爆炸后果等级评价指标包括:所在区域人口密度分值、次生灾害可能性分值,其权重系数分别为:0.810、0.190。
     ④根据可燃气体浓度变化特征,提出下水道和化粪池气体安全监控系统的监控指标为爆炸下限的百分比浓度,以%LEL表示。并建立了三种预警模式:稳定模式、扰动模式和聚集模式,以及对应的判别标准。预警模式判别标准基于可燃气体浓度变化趋势判别式:?1Δ=?C t i CtiCti。若从某一采样时刻起,连续3次出现后一时刻的采样浓度大于前一时刻的现象,判定为可燃气体浓度有增加趋势。通过这种判别标准,可大幅度减少现有下水道和化粪池气体安全监控系统的频繁报警与“误报”现象,提高气体监控预警系统的可靠性和有效性。
     在此基础上,提出了三种预警等级:安全、关注和警戒。不同预警模式对应不同预警等级,不同预警等级对应不同管理对策。其中聚集模式确定为警戒等级,应立即采取处理措施。并将下水道和化粪池作为一个统一的有机整体,建立联动预警调控机制。
Sewers and septic tanks are essential urban infractures. Serious explosion accidents from sewers and septic tanks have happened many times in many cities in recent years, seriously threatening to people’s lives and properties. So to study on risk assessment and early-warning mechanism of gas explsion from urban sewers and septic tanks are very important to ensure urban infractures safety and community safety.
     Aiming to solve frequent gas explosion accidents and serious safety problems, based on field investigation and data collection, comprehensive analysis on distribution characters of occurred explosions as well as monitoring and controlling system alarms, and change characters of flammable gases concentration, flammable gases generation and accumulation mechanism was studied, then gas explosion inducements were ananysied. Therefore, risk assessment model and early-warning mechanism of gas explosion from urban sewers and septic tanks was established, to support the safe management of urban sewers and septic tanks in chongqing. So the following conclusions can be reached:
     ①Acoording to flammable gases concentration change rules,and its acuumulaition mechanism , three accumulation phenomena in sewers and septic tanks were discovered:stability state, perturbation state and accumulation state. HRT, sludge accumulation stage in sewers , exhaust condition of viccinal septic tanks and discharge probability of exogenous flammable gases were screened out to be main influence factors of flammable gases accumulation in sewers. Exhaust condition of septic tanks, load condition and discharge probability of exogenous flammable gases were main influence factors of flammable gases accumulation in septic tanks. Pressure and folw were main factors of flammable gases concentration.
     ②Acoording to risk assessment theory, semi-quatative risk assessment model of gas explosion from urban sewers and septic tanks was established. Gas explosion risk was comprehensive reflection of flammable gases generation and accumulation possibility combined with gas explosion consequence. According to established risk assessment indicators, grade of flammable gases generation and accumulation(L) and grade of gas explosion concequence(C) was separately divided to five grades. Gas explosion risk value was quatanted by product L and C, which was representated by R. Semi-quatititive risk assessment matrix was established in this dissertation. According to the area of risk value(R), gas explosion risk was determined to severe risk, moderate risk, and slight risk of three risk levels. For sewers and septic tanks of severe risk level, online flammable gases monitoring and controlling system should be established.This semi-quatative method was relatively flexible, which can solve problems of lack of primary standards. Managers can ajust the area of risk value(R)of three risk level in semi-quatititive risk assessment matrix, according to specific requirements,to determine the objects of severe risk, to sceern out main monitoring objects from a complex range of sewer and septic tanks.
     ③According to inducements ananysis, gas explosion risk assessment indexes were established, then combined with experts survey and AHP, weight coefficient of each index was determined. Indicators of flammable gases generation and accumulation possibility grade of sewers include: average hydraulic retention time, index of pipeline intersection in manhole, and index of source of exogenous flammable gases, which weight coefficient was: 0.304, 0.145, and 0.551. Indicators of sewer gas explosion concequence grade include: population density surrouding sewer, and possibility of secondary disaster, which weight coefficient were: 0.804, and 0.196. Indicators of flammable gases generation and accumulation possibility grade of septic tanks include: septic tank volum, index ofseptic tank loads, and index of source of exogenous flammable gases, which weight coefficient was: 0.150, 0.619, and 0.231. Indicators of septic tank gas explosion concequence grade include: population density surrouding septic tank, and possibility of secondary disaster, which weight coefficient were: 0.810, and 0.190.
     ④According to change charaters of flammable gases concentration, indicators for gases safety monitoring of sewers and septic tanks was proposed. The indicator was percentage concentration of lower explosion limit, which was representated by %LEL. Three early-alarming modes were eatablished: stability mode, perturbation mode and accumulation mode. Their discrimination standard was also established. The discrimination standard was based on concentration change trends of flammable, which was discriminated by fomula: ?1Δ=?C t i CtiCti. If since some sampling time, the concentration of front moment was continuously three times higher than the next moment, flammable gases concentration had increasing trend. According to this discrimination standard, the frequent alarm and fault alarm phenomenon existed in gas monitoring system of sewers and septic tanks can be significantly reduce, to improve reliability and validity of monitoring system.
     On this basis, three early warning grades were proposed: security, attention and vigilance. Different early warning modes were corresponding to different early warning grades, and different early warning grades were corresponding to different management measures. The accumulation mode was identified to vigilance grade, and treatment measures should be taken immediately. Urban sewers and septic tanks should be treated as an organic whole, to establish their linkage contorling mechanism.
引文
[1]倪长安主编.沼气技术有问必答[M].北京:电子工业出版社, 2008.
    [2] R. R. Sayers Source. Gas Hazards in Sewers and sewerage-treatment plants [J]. Public Health Reports (1896-1970)[R], 1997(49): 145-155.
    [3] Robert W. Seabloom, P.E.Emeritus Professor of Civil and Environmental EngineeringDept. of Civil and Environmental Engineering. septic tank[M]. Ted LoudonProfessor of Agricultural EngineeringFarall Hall.
    [4]谢振辉等.下水道爆炸事故的原因及对策[J].中国给水排水,1997(4): 44-45.
    [5]李代民.城市下水道爆炸的原因及处置措施[J].消防技术与产品信息, 2007(4):35-36.
    [6] http://wsz.cq.gov.cn/index.aspx重庆市政管理委员会网站.
    [7] Albert Guisasola, etc. Methane formation in sewer systems [J]. Water Research, 2008 (42): 1421-1430.
    [8] Albert Guisasola, etc. Development of a model for assessing methane formation in rising main sewers[J]. Water Research 2009 (43): 2874-2884.
    [9] http://www.bjmac.gov.cn/pub/guanwei/I/I3/I3_12/北京市市政市容管理委员会网站—国外城市管理动态.
    [10] http://www.cjk3d.net/bbs/12/t-36612.html数字排水用于排水管网运营监控.
    [11]张忠贵,曾文. MAPGIS市政设施管理平台[J].软件导刊,2008, (7):153-154.
    [12] http://www.stats.gov.cn/中国国家统计局.
    [13]许励敏.市政排水管网的养护管理[J].中国水运,2009, (4):164-165.
    [14]杜豫川,张小宁,陈长等.上海市政排水设施管理系统[J].中国市政工程,2000, (2):42-45.
    [15]杨树丛.地理信息系统_GIS_在市政设施管理养护中的应用[J].北京建筑工程学院学报,2001, (2):81-84.
    [16] http://en.wikipedia.org/wiki/1992_explosions_in_Guadalajara .
    [17] http://www.freebase.com/view/en/1929_ottawa_sewer_explosion/-/base/fires.
    [18] M.A.Silakova, V.Smetanyuk. Model, software for calculation of flammability limits and its validation[R].SAFEKINEX-Diliverable.NO.19, 2007.
    [19]杨静,梁伟臻,孟庆强.城市下水道可燃有毒气体的监测方法[J].中国给水排水, 2005(1):89-90.
    [20]张娜.基于GPRS网络的下水道可燃气体监测系统的研究[D].重庆大学, 2006,硕士论文.
    [21]包亮,王里奥等.基于GPRS的市政下水道气体安全监测预警系统[J].中国给水排水,2009, 25(15):39-43.
    [22]郝晓地,张向萍,兰荔.美国分散式污水处理的历史、现状与未来[J].中国给水排水,2008, 24(22):1-5.
    [23] GB50015-2003.建筑给水排水设计规范[S]. 2003.
    [24] Ted Pettit, Herb linn. A Guide to Safety in Confined Space[M]. U.S Department of health and human services public health service centers for disease control national institute foe occupational safety and health. July 1987.
    [25]古满堂,孙艳玲.国内外市政排水设施养护技术探析[J].技术与应用,2008, (3):75-76.
    [26] DB50/T 337-2009,城市环境卫生公共设施运行维护技术规程,重庆市质量技术监督.2009.
    [27] CJJ14-2005,城市公共厕所设计标准[J],2005.
    [28] CJJ30-2009,城市粪便处理厂运行维护及安全技术规程[S].2009.
    [29]大连市环境卫生管理处,大连市城市环境卫生作业指导手册[S].2009.
    [30]吴文富,气压颤动与降水天气[J].气象,1980, (11):19-21.
    [31]何学秋等编.安全工程学[M] .北京:中国矿业大学出版社,2000.
    [32]朱厦军.温州市主城区化粪池运营管理现状调查[J].环境卫生工程,2007, 15(5):27-28.
    [33]煤矿安全规程[M] .北京:中国法制出版社,2009.
    [34]龙傲雪,田如成.煤矿事故类型的灰色关联度分析[J].中州煤炭,2009, (9):20-21.
    [35]何满潮.深部煤矿灾害机理及监测研究进展[J].煤炭科技, 2007,1(1):1-5.
    [36]郭德勇,郑登锋等.基于GIS的瓦斯爆炸诱因预警技术[J].煤炭学报,2007, 32(12):1287-1290.
    [37]曲志明,周心权,王晓丽,郭延华,刘历波.掘进巷道瓦斯爆炸冲击波状态参数的结构分析[J].矿业安全与环保,2006, 33(3): 2-6.
    [38]董德斌,曹垚林.数量化方法在突出危险性区域预测中的应用[J].煤矿安全,2006, (10):10-13.
    [39]孙永,张峥,钟群鹏.基于物元和可拓集合理论的燃气管道风险等级评定[J].天然气工业, 2009,29(2):102-105.
    [40]王凯全,王宁,张弛,卢泽.城市天然气管道风险特征与肯特法的改进[J].中国安全科学学报, 2008,18(9): 153-158.
    [41]杨印臣,陈秋雄.城市燃气管道风险评估现状及改进[J].天然气与石油, 2006,24(4):33-37.
    [42]张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京示范大学出版社, 2007.
    [43]葛全胜,邹铭,郑景云.中国自然灾害风险综合评估初步研究[M].北京:科学出版社, 2008.
    [44]刘小明,任福田,朱弘戈.基于数量化理论的高速公路交通事故预测方法[J].道路交通与安全, 2001, (1):18-23.
    [45] Abbaspoura M,Mansourib N.City hazardous gas monitoring network. Journal of Loss Prevention in the Process Industries,2005(18):481–487.
    [46]罗荣祥,吴欢,李在钟.浅谈山地城市污水管网改造设计[J] .给水排水,2009, 35(8):108-113.
    [47]温汝俊,罗宇,罗清泉.重庆市主城排水系统及污水处理方案的比较[J].重庆大学学报(自然科学版),2001, 24(1):32-35.
    [48] Jingfang Ye, Zhihua Chen. Suppression of methane explosions in a field-scale pipe [J]. Journal of Loss Prevention in the Process Industries, 2005, (18): 89–95.
    [49]李英建,肖林京,薛琳,周功海.提高催化燃烧型瓦斯报警仪测量精度的有效方法[J].煤矿安全,2006, (10): 7-10.
    [50]印永嘉.大学化学手册[M].济南:山东科学技术出版社, 1985.
    [51]戴前进,李艺,方先金.城市污水处理厂不同污泥厌氧消化的产气速率研究[J].给水排水,2007, 33 (3): 42-45.
    [52]王炳麟译.排水/(日)空气调和.卫生工程协会编[M].北京:科学出版社, 2002.
    [53]周云龙,孙斌,陈飞.气液两相流型智能识别理论及方法[M] .北京:科学出版社, 2007.
    [54]阎昌琪.气液两相流[M] .哈尔滨:哈尔滨工业大学出版社, 2007.
    [55] 02S701.国家建筑标准设计图集—砖砌化粪池[S].2002.
    [56] 03S702.国家建筑标准设计图集—钢筋混凝土粪池[S].2003.
    [57]王红燕.化粪池污水处理能力研究及评价[J].兰州交通大学学报,2009,28 (1): 118-120.
    [58]张翠丽,杨改河,任广鑫等.温度对不同粪便厌氧消化产气速率及消化时间的影响[J].农业工程学报,2008, 24 (7): 209-212.
    [59]瞿永彬.化粪池水量调查及污染物计算[J].环境卫生工程,1999, 7 (1): 3-5.
    [60] GB50014-2006.室外排水设计规范[S].2006.
    [61]赵剑强,朱浚黄.厌氧消化中甲烷产量及沼气中甲烷含量的理论探讨[J].交通环保,2000, 14 (1): 17-20.
    [62] L. Dupont, A. Accorsi. Explosion characteristics of synthesised biogas at various temperatures [J]. Journal of Hazardous Materials, 2006, (B136): 520-525.
    [63] HJ/T169-2004.建设项目环境风险评价技术导则[S].2004.
    [64] GB/T 24353-2009.风险管理原则与实施指南[S].2009.
    [65] Lloyd Kahn, Blair Allen, Julie Jones Peter A. The Septic System Owner's Manual [M]. Shelter Publicatio, 2007.
    [66]蔡良君,姚安林.城市燃气管道风险评价技术现状分析与展望[J].天然气与石油, 2008, 26(6): 28-30.
    [67]张甫仁等.城市燃气管道事故综合风险评价[J].天然气工业,2009,29(2):98-101.
    [68]柳红卫.城市天然气管道半定量风险评估方法研究[J].中国安全生产科学技术,2006,2(3):96-100.
    [69]汪涛,叶健等.城市天然气管网的模糊风险评价方法[J].油气储运, 2004,23(2):3-7.
    [70]黄小美,李百战等.基于层次分析和模糊综合评判的管道风险分析[J].煤气与热力, 2008,28(2):B13-B18.
    [71]郭太生,裴岩.首都重要基础设施安全状态评价[J].中国人民公安大学学报(社会科学版). 2008, (3): 79-89.
    [72]唐保金,张增刚等.基于FAHP法的城市燃气管道风险评价[J].山东建筑大学学报. 2008,23(6): 478-481.
    [73] HBQY-CX-12.危险源辨识、风险评价和风险控制策划控制程序[S].2007.
    [74]李亮、杨俊辉.基于灰色层次分析法的工程项目风险综合评价[J].西安邮电学院学报, 2009, 4(14): 121-124.
    [75]曹志刚,柴春红.模糊综合评价方法在科研项目评价中的应用[J].航空计算技术, 2007,37(1): 51-53.
    [76]永宏,贺思辉.综合评价方法[M].北京:科学出版社, 2000, 167-207.
    [77]胡生煌.主观指标评价的多层次灰色评价法[J].系统工程理论与实践, 1996, (1): 12-20.
    [78]施文.有毒有害气体检测仪器原理和应用[M].北京:化学工业出版社, 2009.
    [79]赵衡阳.气体与粉尘爆炸原理[M].北京:北京理工大学出版社, 1996.
    [80] GB 50493-2009.石油化工企业可燃气体和有毒气体检测报警设计规范[S].2009.
    [81] CJJ93-2003.城市生活垃圾卫生填埋场运行维护技术规程[S].2003.
    [82] DB11/T 273—2005.北京市生活垃圾粪便处理设施环境监测规范[S].2005.
    [83] DB50/T 287-2008.下水道及化粪池危险源监测预警系统技术规程[S].2008.
    [84] GB50028-2006.城镇燃气设计规范[S].2006.
    [85]李翠梅.化粪池污泥作用与清掏周期的研究[J].给水排水,2007, 33(9): 124-126.
    [86]给水排水设计手册(第05册)城镇排水[M] .北京:中国建筑工业出版社, 2002.
    [87] W. Kent Muhlbauer[英].管道风险管理手册[M].杨嘉瑜译.北京:中国石化出版社, 2004.
    [88] GB50156-2002.汽车加油加气站设计与施工规范[S].2002.
    [89] http://www.cq.gov.cn/zwgk/qwfb/134360.htm. 08年度重庆主城区城市空间发展报告.
    [90]重庆统计年鉴[R].重庆市统计局,2009.
    [91]王小平,齐欢.密闭空间内的传感器最佳放置位置研究[J].华中科技大学学报(自然科学版),2004, 32(6): 55-56.
    [92]梁栋.巷道气体分层流特性分析[J].广州大学学报(自然科学版),2004,3(2): 51-54.
    [93] Volkmar Schr¨oder , Maria Molnarne. Flammability of gas mixtures Part 1: Fire potential[J]. Journal of Hazardous Materials,2005, (A121): 37–44.
    [94] Volkmar Schr¨oder , Maria Molnarne. Flammability of gas mixtures Part2: Influence of inert gases[J]. Journal of Hazardous Materials 2005, (A121): 45–49.
    [95] Ori Lahav, Amitai Sagiv et al. A different approach for predicting H2S(g) emission rates in gravity sewers[J]. WAT E R RE S E A R C H, 2006, (40): 259– 266.
    [96] U.S. Environmental Protection Agency, Onsite Wastewater Treatment Systems Manual[R]. 2002.
    [97] Baumann, E.R., and H.E. Babbit. An Investigation of the Performance of Small Septic Tanks[R]. University of Illinois Engineering Experiment Station, Bulletin Series No. 409, Vol. 50, No. 47, University of Illinois, Urbana, IL.
    [98] S.Y. Liao, Q. Cheng, D.M. Jiang and J. Gao, Experimental study of flammability limits of natural gas–air mixture [J]. Journal of Hazardous Materials ,2005,B119: 81–84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700