用户名: 密码: 验证码:
直齿圆柱齿轮传动弯曲振动主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于齿轮啮合原理及振动冲击理论,采用集中质量法建立了由一对渐开线直齿圆柱齿轮组成的传动系统三自由度数学模型。并采用一种主动控制结构,使主动控制力以更直接的方式来控制齿轮啮合点由于传动误差而引起的振动;利用压电堆作动器,通过作动器输出的位移控制齿轮轴的弯曲振动,以抑制齿轮传动误差,进而达到控制齿轮传动系统振动噪声的目的。在MATLAB/SIMULINK环境中设计模糊控制器和模糊PD控制器,建立完整的传动系统径向振动主动控制模型,并对其进行控制仿真。仿真结果表明模糊控制能有效的抑制系统振动。又基于ADAMS建立了齿轮传动系统刚柔耦合虚拟样机,研究和分析系统动态响应特性。并结合ADAMS和MATLAB软件对齿轮传动系统振动主动控制进行联合仿真,仿真结果进一步验证了齿轮传动振动主动控制的有效性和可行性。最后设计了齿轮传动系统振动主动控制实验平台,对齿轮系统动态响应特性进行实验研究,验证数学模型和虚拟样机的正确性。本文的主要内容有:
     1.采用集中质量法建立了由一对直齿圆柱齿轮组成的齿轮传动系统三自由度弯扭耦合非线性数学模型;
     2.基于ADAMS软件,建立了齿轮传动系统刚柔耦合虚拟样机,分析系统动态响应特性;
     3.设计了齿轮传动振动模糊控制系统和模糊PD控制系统;
     4.结合ADAMS和MATLAB软件对齿轮系统振动主动控制进行联合仿真;
     5.设计了齿轮系统实验测试平台。
A three freedom degrees mathematical model of a pair of involute spur gear transmission system is built using the lumped mass method, based on gear meshing theory and vibration impact theory. An active control structure is applied to control the gear meshing point vibration which is caused by transmission error. Through piezoelectric stack actuator displacement output to control the shaft’s vibration, then suppressed the gear transmission error, and controlled the gear transmission system’s noise. Based on the Matlab/simulink environment, a fuzzy PD active controller and a fuzzy active controller for system’s vibration are designed. A complete gear transmission vibration control system is set up, and simulated. The results show that fuzzy control algorithm can effectively suppress the system’s vibration. Then a rigid-flexible coupling gear transmission virtual prototyping is established based on ADAMS, and it’s dynamic response has been researched and analyzed. A simulation method which combines ADAMS and MATLAB is carried out to research the gear transmission system’s vibration active control. The results show that the active vibration control system is effective and feasible. Final a gear vibration active control system experimental platform has been designed. The gear dynamic response has been studied by experimental method, and the response is consistent with the result which is carried out by mathematical model and the accuracy of virtual prototyping. The main contents and creative points are:
     1. A three freedom degrees mathematical model of a pair of involute spur gear transmission system is built using the lumped mass method;
     2. A rigid-flexible coupling gear transmission virtual prototyping is established based on ADAMS, and it’s dynamic response has been researched and analyzed;
     3. A fuzzy PD active control system and a fuzzy active control system for gear transmission system’s vibration are designed;
     4. A simulation method which combines ADAMS and MATLAB is carried out to research the gear transmission system’s vibration active control;
     5. A gear vibration active control system experimental platform has been designed.
引文
[1]程耀东.机械振动学[M].浙江:浙江大学出版社,1988.
    [2]李山青,刘正兴,杨耀文.压电材料在智能结构形状和振动控制中的应用.力学进展,1997,27(1):5-18.
    [3]于华民,朱海潮,施引.自适应控制FXLMS算法有源噪声控制仿真研究[J].海军工程大学学报,2003,10(5):22-25.
    [4]张旭辉,付永领,刘永光.约束权函数的FXLMS算法的自适应有源隔振研究[J].噪声和振动控制,2008,4(2):4-6.
    [5] Kim I S,Na H S,Gray R M.Constraint filterrd-x and filtered-u least-mean-square algorithms for the active noise control in ducts [J]. J. Acoust. Soc. Amer. 1994,95:3379-3389.
    [6] Widrow B,Schur D,Shaffer S. On adaptive inverse control [A].In Proc, 15th Asilomar Conf, [C]. USA;Santa Clara,1981.
    [7] Burgess J C, Active adaptive sound control in a duct.A computer simulation [J]. J.Acoust. Amer,1981,70(9):715-726.
    [8] A.Kahraman,R.Singh.Nonliner dynamics of a spur gear pair [J]. Journal of Sound and Vibration,1990,103(2):447-459.
    [9] A.Kahraman,R.Singh.Interactions between time-varying meshing stiffness and clearance non-linear ties in a geared system [J]. Journal of Sound and VCibration,1991,146(7):463-470.
    [10]唐增宝,钟毅芳.多级齿轮传动系统的动态仿真[J].机械传动,1993,17(1):37-41.
    [11] N.Iwatusbo.Coupled laterl torsional vibration of rotor system trained by gears [J]. Bulletin of JSME,1994,27:271-277.
    [12] P.Velex, M.Maatar. A mathematical modle for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior[J]. Journal of Sound and Vibration, 1996,191:629-660.
    [13] V. Neriya. On the dynamic response of a helical geared system subjected to a static transmission error in the from of deterministic and filtered white noise inputs[J]. Journal of Vibration, Acoustic Stree and Reliability in Design,1996,110:501-506.
    [14]秦大同,朱才朝,李润方.内齿行星传动参数动态优化[J].重庆大学学报,1997(2):89-94.
    [15] V. Neriya,R.Bhatr, S. Sanker. Coupled tensional flexural vibration of a geared shaft system using finite element analysis[J]. The Shock and Vibration Bulletin,1998,55:25-58.
    [16]沈允文,孙涛.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2000,38(3):100-107.
    [17]李润方,林腾蛟.齿轮啮合内部动态激励数值分析[J].机械传动, 2001,25(2):1-3.
    [18]李润方,王立华等.高速重载齿轮的有限元分析[J].中国机械工程,2003,20:1773-1777.
    [19]李连进,张维屏.降低齿轮箱噪声的一种途径[J].东北化工学报,1989,10(4):439-444.
    [20]任明章,连小珉,蒋孝.齿轮箱噪声故障诊断专家系统的研究与开发[J].清华大学学报,1996,36(8):66-71.
    [21]李润方,林腾蛟,陶泽光.齿轮箱振动与噪声实验研究[J].机械设计与研究,2003,19(5):63-65.
    [22]王基,吴新跃,朱石坚.某型船用传动齿轮箱振动模态的试验与分析[J].海军工程大学学报,2007,19(2):55-58.
    [23]王玉芳,童忠钫.齿轮误差对齿轮加速度噪声的影响[J].振动、测试与诊断,1993(4):1-10.
    [24]左言言,宫镇.齿轮箱噪声的分析与控制[J].中国机械工程,1994,5(2):55-57.
    [25]种建明.齿轮箱结构设计对噪声的影响[J].机械传动,1996,11:21-24.
    [26]张平宽,王慧林,史玉光.膜阻尼在齿轮箱噪声控制中的应用[J].太原重型机械学院学报,1996,17(1):81-85.
    [27]毛炳秋,林莉,曹挺杰.采用阻尼环降低齿轮传动噪声的研究[J].机械设计与研究,2005,21(1):47-49.
    [28]罗玉军,高中庸,朱萍.基于润滑降噪实验的车床挂轮噪声分析[J].润滑与密封,2006(7):155-157.
    [29] Tuplin W A. Gear load capacity[J]. Sir Isaac Pitman&Sans,Ltd.,1962.
    [30] Iida H,Tamura A,Yamada Y.Vibrational characteristics of friction between gear teeth[J]. Bull JSME 1985,28:1521~1519.
    [31] Bouillaut L,Sidahmed M. Cyclostationary Approach and Bilinear Approach: Comparison, Applications to Early Diagnosis for Helicopter Gearbox and Classification Method Based on HOCS[J]. Mechanical Systems and Signal Processing, 2001,15(5): 923~943.
    [32]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [33] Yong CHEN, etc. Studies on Noise and Vibration of Planetary Gear Drives for Automatic Transmission of Transmission of Passenger Cars[J].日本机械论文集(C篇),2000:642-662.
    [34] Haruo Houjoh, Shigeki Matsumura. Tooth Surface Evaluation of a Helical Gear by Using Synchronous Average of Vibration of a Gear Pair. Proceedings of the International Conference on Mechanical Transmissions[J]. 2006,Sept. 26-30, Chongqing.
    [35]毛炳秋,林莉.采用变位齿轮降低传动振动的理论分析与试验研究[J].机械设计与研究,2003, 19(2):32~34.
    [36]陈威,迟宝山.工程机械齿轮传动系统噪声分析与控制[J].现代制造工程,2004,1:80~85.
    [37]薛延华,吴新跃.一种齿轮箱振动控制方法[J].海军工程大学学报,2001,13(1):99-103 .
    [38]毛炳秋,林莉,曹挺杰.采用阻尼环降低齿轮传动振动噪声研究[J].机械设计与研究,2005,21(1): 47~49.
    [39] G.T. Montague, A.F. Kascak, A. Palazzolo, D. Manchala, E. Thomas, Feed-Forward Control of Gear Mesh Vibration Using Piezoelectric Actuators[J]. NASA Technique Memorandum, 106366, 1994.
    [40] B. Rebbechi, C. Howard, C. Hansen. Active Control of Gearbox Vibration. Proceedings of the Active Control of Sound and Vibration Conference[J]. Fort Lauderdale, 1999:295~304.
    [41] D.R. Mahapatra, S. Gopalakrishnan, B. Balachandran. Active Feedback Control of Multiple Waves in Helicopter Gearbox Support Struts[J]. Smart Materials and Structures. 2001, 10: 1046~1058.
    [42] M.H. Chen, M.J. Brennan, Active Control of Gear Vibration Using Specially Configured Sensors and Actuators[J]. Smart Materials and Structures , 2000, 9: 342~350.
    [43] Y.H. Guan, W.S. Shepard Jr., T.C. Lim, Direct Hybrid Adaptive Control of Gear Pair Vibration[J]. Journal of Dynamic Systems, Measurement and Control, 2003, 125: 585~594.
    [44] Jian-Da Wu, Jia-Hong Lin. Implementation of an Active Vibration Controller for Gear-Set Shaft Usingμ-Analysis[J]. Journal of Sound and Vibration, 2005, 281 : 1037~1055.
    [45] Yuan H. Guana, Teik C. Limb, W. Steve Shepard, Jr. Experimental Study on Active Vibration Control of a Gearbox System[J]. Journal of Sound and Vibration, 2005, 282 : 713~733.
    [46]桂洪斌,金咸定,肖熙.海洋平台振动控制研究综述[J].中国海洋平台,2003,18(5):19-25
    [47]芮庆.车辆振动模糊控制的仿真研究[J].噪声与振动控制,1997,6(3).
    [48]刘华.基于神经网络的振动智能控制理论、方法及实验研究[D].天津大学博士论文,1995.
    [49] Zadeh L A. Fuzzy sets.informat[J]. control,1965,8:338-353.
    [50]窦振中.模糊逻辑技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [51]王立新.自适应模糊系统与控制[M].北京:国防工业出版社,1995.
    [52]刘曙光,巍俊明,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001.
    [53]杨宏斌,邓效忠,高建平等.齿轮非线性振动研究综述[J].中国机械工程,1999.10(7):807-809.
    [54] Amabili M, Rivota A. Dynamic analysis of spur gear pairs: Steady-state response and stability of the sdof model with time-varying meshing damping[J]. Mechanical System and Signal Processing. 1997.11(3):375-390.
    [55]王立华,黄亚宇,李润方,林腾蛟.弧齿锥齿轮传动系统的非线性振动特性研究[J].中国机械工程,2007,2(18):260-264.
    [56]孙国建,林腾蛟,李润方,刘文.渐开线齿轮动力接触有限元及修形影响[J].机械传动,2008,2(32):57-59.
    [57]李亚强,陈定方,祖巧红.基于ADAMS的减速器动力学仿真分析[J].湖北工业大学学报,2008,4(2):41-43.
    [58]屈文涛,沈允文,徐建宁.基于ANSYS的双圆弧齿轮接触应力有限元分析[J].农业机械学报,2006,10(37):139-141.
    [59]洪清泉,程颖.基于ADAMS的多级齿轮传动系统动力学仿真[J].北京理工大学学报.2003,12(6):690-693
    [60]黄泽平,马吉胜,吴大林.齿轮轮齿接触力仿真研究[J].机械传动,2007,2(31):26-29.
    [61]李金玉,勾志践,李媛.基于ADAMS的齿轮啮合过程中齿轮力的动态仿真[J].机械设计,2005,3(32):15-17.
    [62]毕凤荣,崔新涛,刘宁.渐开线齿轮动态啮合力计算机仿真[J].天津大学学报,2005,11(38):991-995.
    [63]屈文涛,沈允文,郭辉.双圆弧齿轮基于柔性轮缘的动态接触模型研究[J].机械科学与技术,2006(11):1273-1275.
    [64]屈文涛,沈允文,郭辉;徐建宁,赵宁.双圆弧齿轮的有限元综合分析方法[J].机械强度. 2006,28(3):415-418.
    [65]朱春霞,朱立达,刘永贤,蔡光起.基于ADAMS的并联机床刚柔耦合系统的协同建模研究[J].机械设计与研究,2007,5(11):1-5.
    [66]黎业飞,邱清盈,冯培恩.基于刚柔混合建模的时变结构动力学分析[J].浙江大学学报(工学版),2007,2(2):311-314.
    [67]徐辅仁.渐开线齿轮机构输出扭矩波动率与齿间滑动摩擦系数及齿数之关系[J].机械设计及制造,2000(5):37-39.
    [68]刘力红,黄宇婷,张东速.齿面摩擦力对齿轮支座强迫振动的影响[J].煤矿机械,2003(2):25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700