用户名: 密码: 验证码:
籽粒苋C_4关键酶基因(NAD-ME、PEPC)的克隆及NAD-ME功能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与C3植物相比,C4植物在极端条件(强光、高温、干旱等)下具有明显的生长优势、高养分利用率及高生物产量,这是由于其光合速率高、CO2补偿点低,而且几乎没有光呼吸。C4植物这些优点的生物学基础在于其具有C4光合途径。籽粒苋属双子叶C4植物,克隆其C4关键酶基因,以期为C4基因工程提供候选基因。
     NAD/NADP-苹果酸酶和磷酸烯醇式丙酮酸羧化酶(PEPC)是C4途径的两个关键酶。NAD/NADP-苹果酸酶催化苹果酸脱羧释放CO2,并产生丙酮酸,丙酮酸再生为PEP,使C4途径得以循环进行。本研究根据已报道的玉米NADP-ME基因序列,设计特异性引物,经RT-PCR扩增获得了籽粒苋NAD-ME基因的cDNA序列。该序列开放可读框长度为1872bp,编码623个氨基酸。通过Blastn和DNAMAN软件比对,发现该基因核苷酸序列与其他植物已报道的NAD/NADP-ME基因有75.1%-80.6%的相似性。另外,对推断氨基酸序列的蛋白保守区、疏水性/亲水性、潜在跨膜片段、信号肽、蛋白固有无序化和蛋白二级结构进行了分析,初步研究了籽粒苋NAD-ME蛋白的理化性质。运用CHIPS、CUSP和CodonW程序分析了籽粒苋NAD-ME基因的密码子的偏好性,并与其他植物的NAD/NADP-ME基因密码子偏好性和大肠杆菌、酵母的基因组的密码子偏好性进行比较。结果表明,所比较的单子叶植物和双子叶植物的NAD/NADP-ME基因与籽粒苋NAD-ME基因都存在类似的密码子使用情况,对同义密码子的使用有明显的偏好性,其密码子多以A或T结尾;籽粒苋NAD-ME基因与大肠杆菌、酵母的基因组密码子偏好性有较大差异。分析结果对选择籽粒苋NAD-ME合适的转基因受体植物以及合适的蛋白质表达系统具有一定的指导意义。
     PEPC在Mn2+或Mg2+存在的情况下,催化PEP羧化为OAA。本研究采用分段扩增的方法,首次克隆出了籽粒苋PEPC的基因组DNA全长。经Blast比对分析,结果显示,与本克隆片段相似的序列绝大多数为植物PEPC基因,其中,与F.pringlei的PEPC基因(Z71973.1)相似性高达93%。因此,初步判定实验获得的序列为籽粒苋基因组PEPC基因。
Compared with C3 plant, C4 plant has evident growth advantage, higher rate of nutrition using and higher bio-yield in extreme condition (such as high light intensities, high temperatures and drought) because of efficient photosynthesis and non-photorespiration. Cloning the key enzymes of C4 photosynthetic pathway in Amaranthus hypochondriacus L. as one of C4 dicotyledon provides candidate gene for C4 genetic engineering.
     NAD/NADP-malic enzyme and phosphoenolpyruvate carboxylase (PEPC)are two key enzymes of C4 pathway. NAD/NADP-ME catalyzes the oxidative decarboxylation of 1-malate to yield pyruvate, CO2, and NADPH in the presence of a divalent cation. In C4 plants, NAD/NADP-ME release CO2 for fixation by Calvin cycle. In this study, a full-length cDNA encoding Amaranthus hypochondriacus L. NAD-ME was cloned by RT-PCR. The cDNA includes a 1872-bp open reading frame that encodes 623 amino acids. Blastn and DNAMAN analysis reveals that the nucleotide sequence has 75.1%-80.6% identity. Furthermore, the physico-chemical property of NAD-ME of Amaranthus hypochondriacus L.,including the conservative domain, hydrophobicity/hydrophilicity, potential transmembrane segment, signal peptide, intrinsically disordered structure and secondary structure of the hypothetical protein were analyzed. Codon bias of Amaranthus hypochondriacus L. NAD-ME was further analyzed by Codon W, CHIPS and CUSP programs for identifying codon bias. Moreover, the codon bias of Amaranthus hypochondriacus L.NAD-ME were compared with that of NAD/NADP-ME gene of other seven plants and two model organisms, Escherichia coli and yeast. The results showed that codon bias of NAD/NADP-ME of monocotyledons and dicotyledonous plants obviously remarked at some codons which were the A or T in the 3rd position of codons. Codon bias of NAD-ME of Amaranthus hypochondriacus L.was significantly different from those of E.coli and yeast genome.The result has important guidance for choosing appropriate recipient plants and protein exprssion system of NAD-ME gene of Amaranthus hypochondriacus L.
     PEPC catalyzes irreversible carboxylation of PEP in the presence of Mn2+ and Mg2+ to yield OAA. In this study, we cloned the genomic gene of PEPC of Amaranthus hypochondriacus L. firstly by PCR. According to Blast analysis, we found most of the cloned DNA sequences similar to that of PEPC gene of other plants. And the identity to the F.pringlei PEPC was 93%.Thus, we determinated the cloned fragment was Amaranthus hypochondriacus L. PEPC preliminarily.
引文
[1]Dengler N G,Nelson T. Leaf structure and development in C4 plants.C4 Plant Biology,1999,133-172.
    [2]Hatch M D. C4 photosynthesis:a historical overview. C4 Plant Biology,1999,17-46.
    [3]Kanai R, Edwards G E. The biochemistry of C4 photosynthesis. C4 Plant Biology, 1999,49-87.
    [4]Edwrads G E, Andreo C S.NADP-malic enzyme from plants.Phytochemistry,1992, 31,1845-1857.
    [5]Jenner H L, Winning B M, Millar H, etal.NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol,2001,126,1139-1149.
    [6]Palmer J M. The organization and regulation of electron transport in plant mitochondria. AnnuRev Plant Physiol,1976,27,133-157.
    [7]Rustin P, Moreau F, Lance C. Malate oxidation in plant mitochondria via malic enzyme and the cyanide-insensitive electron transport pathway. Plant Physiology, 1980,66,457-462.
    [8]Rustin P, Lance C.Malate metabolism in leaf mitochondria from the crassulacean acid metabolism plant Kalanchoe blossfeldiana Poelln. Plant Physiology,1986,81, 1039-1043.
    [9]Mariel C, Marcos A. A comprehensive analysis of the NADP malic enzyme gene family of Arabidopsis. Plant Phy,2005,139(1),39-51.
    [10]迟伟,阳江华,张青婵.水稻的4个NADP-ME基因具有不同的表达模式.自然科学进展,2004,14(12),1402-1410.
    [11]Marion H. O'Leary. Phosphoenolpy ruvatecarboxylase:an enzymologist's view. Annu Rev Plant Physiol,1982,33,297-315.
    [12]Raymond C, Jean V, Marion H. PHOSPHOENOLPYRUVATE CARBOXYLASE:A Ubiquitous, Highly Regulated Enzyme in Plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47,273-298.
    [13]Izui K, Matsumura H, Furumoto T, etal.Phosphoenolpy ruvate carboxylase:an new era of structural biology. Annu Rev Plant Biol,2004,55,69-84.
    [14]Matsumura H, Xie Y, Shirakata S etal.Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure,2002, 10,1721-1730.
    [15]Mares J, Barthova J, Leblova S.Purification and properties of phos-phoenolpyruvate carboxylase fromgreen leaves of maize. Collect Czech. Chem Commun,1979,44,1835-1840.
    [16]Walker G H, Edwards G E. Tautomerization of oxaloacetate and inhibition of maize leaf phosphoenolpyruvate carboxylase. Phytochemistry,1991,30,751-756.
    [17]Tover Mendaz A, Mujica Jimenez C, Munoz R A. Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol,2000,123, 149-160.
    [18]Parsley K. The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Mol Biol,2006,62,339-349.
    [19]Glackin, Gallagher J. Isolation and characterization of a cDNA clone from Lolium temulentum L. encoding for a sucrose hydrolytic enzyme, which shows alkaline/neutral invertase activity. Journal of Experimental Botany,1998,49, 789-795.
    [20]Sheen J. Molecular mechanisms underlying the differential expression of maize pyruvate, or thophosphate dikinase genss.Plant Cell,1991,3(3),225-245.
    [21]甘露.红苋R104叶绿体基因文库的构建及1,5-二磷酸核酮糖羧化/加氧酶大亚基基因的克隆植物学报.1989,31(4),25-28.
    [22]周永刚.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究.生物工程学报2001,1(17),34-39.
    [23]邓智年.MAR序列介导野苋菜凝集素基因在白菜中的表达.园艺学报2007,34(2),381-386.
    [24]徐芳秀.籽粒苋类Ⅱ型金属硫蛋白基因的分离及其表达分析.农业生物技术学报.2002,10(1),23-24.
    [25]Li L G, He Z Y, Pandey G K. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem,2002,277 (2),5360-5368.
    [26]Milligan S B, John B, Yaghoobi J, et al.The root nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell,1998,10,1307-1319.
    [27]Emst K, Amar K, Doris K. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J,2002,31, 127-136.
    [28]Van der Vossen E A G, Van der Voort J, Kanyuka K. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens:a virus and a nematode. Plant J,2000,23,567-576.
    [29]Xiao S, Ellwood S, Calis O.Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8.Science,2001,291,118-120.
    [30]Swiderski M R, Innes R W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J,2001,26,101-112.
    [31]Bittner-Eddy P D, Crute E B, Holub J L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specifiy downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J,2000,21,177-188.
    [32]Bryan G T, Wu K, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000,12,2033-2045.
    [33]Yoshimura S, Yamanouchi, U, Katayose Y, et al. Expression of Xal,a bacterial blight resistance gene in rice, is inducedby bacterial inoculation. Proc Natl Acad Sci USA,1998,95,1663-1668.
    [34]Wang Z X, Yano M, Yamanouchi U. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant cell,1999,19,55-64.
    [35]王石平,刘克德,王江,等.用同源序列的染色体定位寻找水稻抗病基因DNA片段.植物学报,1998,40(1),42-50.
    [36]Chen R G, Li H X, Zhang L Y, et al.CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.)confers nematode resistance in tomato.Plant cell reports,2007,26,895-905.
    [37]陈力学.生物信息学在基因组研究中的应用.国外医学临床生物化学与检验学分册,2003,24(6),339-340.
    [38]张方,迟伟,金成哲,等.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育,2003,14(48),1542-1546.
    [39]李明,姚玉新,刘志,等.苹果果实中细胞质型苹果酸酶基因(NADP-ME)的克隆与表达分析.中国农学通报,2007,7(23),95-100.
    [40]杨福明,徐德昌,侯爱菊.甘蔗全长丙酮酸磷酸二激酶(PPDK)基因的克隆.中国生物工程杂志,2007,27(10),87-92.
    [41]LUO Z X, ZHANG SH Z, YANG B P. Transformation of genes of C4 photosynthetic key enzyme into C3 plants [J].Plant Physiology Communications,2008,44(2), 187-193.
    [42]GONG CH M, LIANG Z S, NING P B.A review of adaptable variations and evolution of photosynthetic carbon assimilating pathway in C3 and C4 plants [J]. Chinese Journal of Plant Ecology,2009,33(1),206-221.
    [43]LANCE C, RUSTIN P.The central role of malate in plant metabolism [J].Physiol Veg,1984,22(5),625-641.
    [44]CHANG G G, TONG L. Structure and function of malic enzymes, a new class of oxidative decarboxylases [J]. Biochemistry,2003,42(44),12721-12733.
    [45]EDWARDS G, ANDREO C S.NADP-malic enzyme from plants[J].Phytochemistry, 1992,31(6),1845-1857.
    [46]DRINCOVICH M, CASATIP, ANDREO C S.NADP-malic enzyme fromplants:A ubiquitous enzyme involved in different metabolic pathways[J].FEBS Lett,2001, 490(1),1-6.
    [47]ARTUS N, EDWARDS G. NAD-malic enzyme from plants[J].FEBS Lett.,1985, 182(2),225-233.
    [48]CASATI P, DRINCOVICH M F, EDWARDS G. Malate metabolism by NADP-malic enzyme in plant defense[J].Photosynth Res.,1999,61(2),99-105.
    [49]SMITH R G, GAUTHIER D A, DENNIS D T. Malate and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm[J].Plant Physiol., 1992,98(4),1233-1238.
    [50]EASTMOND P J, DENNIS D T, RAWTHORNE S.Evidence that a malate/inorganic phosphate exchange translocator imports carbon across theleucoplast envelope for fatty acid synthesis in developing castor seed endosperm[J].Plant Physiol.,1997, 114(3),851-856.
    [51]SCHAAF J, WALTER M H, HESS D.Primary metabolism in plant defense: regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues[J].Plant Physiol,1995,108(3),949-960.
    [52]MARTINOIA E, RENTSCH D. Malate compartmentation:Responses to a complex metabolism[J].Annu Rev Plant Physiol Plant Mol Biol,1994,(10),45,447-467.
    [53]LI ZH H, ZHANG L J, CUI ZH H. Bioinformatical Analysis on C4 NADP-ME from Maize[J].Biotechnology Bulletin,2009,(3),61-64.
    [54]ASAPH B C, MURRY R B, SUSANNE V C.C4 photosynthetic isotope exchange in NAD-ME-type and NADP-ME-type grasses[J].Journal of Experimental Botany, 2008,59(7),1695-1703.
    [55]DAGMAR B, PETER W. Primary structure of NADP-dependent malic enzyme in the dicotyledonous C4 plant Flaveria trinervia[J].FEBS Lett.,1990,273(1-2),111-115.
    [56]张秀玲.盐碱植物籽粒苋的开发利用[J].安徽农业科学,2007,35(4),1074-1135.
    [57]石秀凡,黄京飞,柳树群,等.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29(3),411-414.
    [58]Urrutia A O, Hurst L D. Codon Usage Bias Covaries With Expression Breadth and the Rate of Synonymous Evolution in Humans, but This Is Not Evidence for Selection[J].Genetics,2001,159(3),1191-1199.
    [59]Sueoka N, Kawanishi Y. DNA G+C Content of the Third Codon Position and Codon Usage Biases of Human Genes[J].Gene,2000,261(1),53-62.
    [60]吴宪明,吴松锋,任大明,等.密码子偏性的分析方法及相关研究进展[J].遗传,HEREDITAS(Beijing),2007,29(4),420-426.
    [61]李娟,薛庆中.拟南芥及水稻转录因子MADS密码子的偏好性比较[J].浙江大学学报(农业与生命科学版),2005,31(5),513-517.
    [62]Sharp P M, Li W H. An evolutionary perspective on synonymous codon usage in unicellular organisms[J].Journal of Molecular Evolution,1986,24(1-2),28-38.
    [63]Sau K, Gupta S K, Sau S, et al.Synonymous codon usage bias in 16 Staphylococcus aureus phages:Implication in phage therapy[J].Virus Research, 2005,13(2),123-131.
    [64]顾万君,马建民,周童,等.不同结构的蛋白编码基因的密码子偏性研究[J].生物物理学报,2002,18(1),81-86.
    [65]Sharp P M, Cowe E, Higgins D G, et al.Codon usage patterns in Escherichia coli, Bacillus subtilis,Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity[J].Nucleic Acids Research,1988,16(17),8207-8211.
    [66]龙文兴,等.中国牧草研究进展.热带农业科学,2006,26(2),72-76.
    [67]TAKUECHI Y, AKAGI H, KAMASAWA N, OSUMIM, HONDA H. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependant malic enzyme[J].Planta,2000,211(2),265-274.
    [68]CHI W, ZHOU J S, ZHANG F.WU N H. Photosynthetic features of transgenic rice expressing Sorghum C4 type NADP-ME[J].Acta Botanica Sinica,2004,46(7), 873-882.
    [69]SERGIY O G, MICHAIL Y L, OXANA V G. To be folded OR to be unfolded[J]. Protein Sci.,2004,13(11),2871-2877.
    [70]LIU H M, HE R, ZHAO Y. Analysis of codon usage in maize[J].Journal of Nuclear Agricultural Sciences,2008,22(2),141-147.
    [71]AKIRRA K, NAOHIKO T M. Patterns of codon usage bias in three dicot and four monocot plant species[J].Genes Genetic Systems,2003,78(5),342-352.
    [72]YIN CH G, DU L X, ZHAO G P. Optimizing the expression of Mx gene in Escherichia coli based on rare codon and mRNA structure[J].Hereditas,2009, 31(1),75-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700