用户名: 密码: 验证码:
羟丙基-β-环糊精修饰聚氰基丙烯酸正丁酯纳米粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用现代靶向制剂新技术,选用羟基喜树碱为模型药物,以纳米粒为载体,研制羟丙基-β-环糊精修饰聚氰基丙烯酸正丁酯纳米粒新型靶向给药系统并进行动物体内分布及药动学研究,探索抗肿瘤药物靶向给药治疗的新方法、新思路、新技术,是药剂学前沿领域的研究热点,具有较高的科学技术价值和临床应用前景。
     羟基喜树碱(Hydroxycamptothecin,HCPT)是从我国特有珙桐科旱莲属落叶植物喜树(Camptotheca acuminata)中提取出来的一种生物碱,具有显著的抗肿瘤活性及较宽的抗癌谱,且与其他常用的抗肿瘤药无交叉耐药性,可用于治疗多种恶性肿瘤。HCPT作为抗肿瘤药在临床上被广泛应用,对腹水性肝癌、头颈癌、胃癌、膀胱癌等具有明显疗效,为我国最常使用的抗肿瘤植物药之一。HCPT为水不溶性、脂难溶性药物,临床常用剂型为HCPT钠盐注射剂,但由于HCPT在体内代谢很快(t_(1/2)=5min),组织分布不理想以及内酯环不稳定性均会阻碍其充分发挥抗肿瘤作用,限制了临床应用。因此采用靶向制剂技术,将HCPT制成纳米制剂有望克服以上缺点,为HCPT的临床应用开辟更广阔的前景。
     本课题以生物可降解型高分子材料氰基丙烯酸正丁酯为载体材料,研制羟丙基-β-环糊精修饰的羟基喜树碱聚氰基丙烯酸正丁酯纳米粒(HCPT-PBCA-NP)。在单因素考察的基础上,通过均匀设计优选处方及工艺,采用乳化聚合法制备纳米粒,筛选最优冻干保护剂进行冷冻干燥,采用MTT法考察体外抗肿瘤活性,建立可靠的含量测定方法及体内外质量评价指标,研究纳米粒在家兔体内的药物动力学特征及小鼠体内组织分布特征,并就羟丙基-β-环糊精用量对纳米粒性质的影响进行考察。主要研究结果如下:
     1.以HCPT-PBCA-NP的形态和包封率为指标,固定处方中HCPT及羟丙基-β-环糊精用量,通过单因素试验考察表面活性剂及稳定剂种类、温度、搅拌速度、搅拌时间、pH值、氰基丙烯酸正丁酯(BCA)用量及盐类附加剂对纳米粒性质的影响。根据单因素考察结果,选择对纳米粒性质影响最显著的五个因素作为考察对象,即单体BCA用量、稳定剂Dxtran-70用量、乳化剂Pluronic F-68用量、附加剂NaHSO_3用量及pH值,以包封率为指标,依照均匀试验设计优化、筛选处方与制备工艺。得最佳处方与工艺为:BCA用量为70μL,Dxtran-70用量为15mg,Pluronic F-68用量为15mg,NaHSO_3用量为120mg,pH值为3.0,搅拌时间为3h,温度为25℃。
     2.对优化所得HCPT-PBCA-NP的理化性质及稳定性进行综合评价,所制备的纳米粒在透射电镜下观察分散性好、圆整、均匀而不粘连,平均粒径为137.4nm,Zeta电位为-20.37±0.92mV,包封率为(78.56±2.17)%,载药量为(7.40±0.529)%,胶体pH值为4.96±0.079。HCPT-PBCA-NP胶体溶液在低温(4℃左右)条件下稳定性较好,而室温(25℃左右)条件下稳定性较差,长时间放置易出现沉淀,粒径和包封率改变等不稳定现象,因此需避光冷藏保存。
     3.为进一步增加HCPT-PBCA-NP胶体溶液的物理及化学稳定性,延长贮存期,选择以8%甘露醇和4%海藻糖合用作冻干保护剂,制备冻干制剂,并以其微观形态,以及再分散后的粒径大小、表面电位、包封率及载药量为指标,对冻干效果进行评价。结果表明,与冻干前的HCPT-PBCA-NP胶体溶液相比,冻干复溶后粒子分布比较均匀,分散性较好,但稍有粘连;平均粒径略有增大,由137.4nm增至169.7nm;Zeta电位由-20.37 mV改变至-22.59 mV;包封率和载药量均略有降低,分别由(78.56±2.17)%及(7.40±0.529)%降低至(72.83±3.42)%及(6.27±0.368)%。
     4.采用荧光分光光度法进行生物样品的测定。本方法灵敏度较高,重现性较好,线性范围广,且操作简单,快速,准确,用此法测定家兔血浆、小鼠血浆及各组织脏器中HCPT浓度,计算药动学参数,取得良好结果。为保证测定结果的准确性,在生物样品处理过程中,应先加入冰醋酸避光酸化,使开环的HCPT闭合成内酯形式,再用甲醇-乙腈(1:1)混合液沉淀蛋白提取药物后测定荧光吸收强度F。血浆及各组织器官药物浓度线性关系良好,回收率均在90%~110%内,日内精密度小于6%,日间精密度小于8%,且内源性物质不干扰HCPT的测定,可满足生物样品测定的要求。
     5.家兔静脉注射HCPT注射液和HCPT-PBCA-NP后,血药浓度测定结果用DAS 2.0药物动力学程序进行处理,两者体内药动学过程均符合双室模型特征,动力学方程分别为:C=0.582e~(-1.747t)+0.097e~(-0.306t)和C=0.204e~(-0.464t)+0.115e~(-0.044t)。通过对两种制剂静脉注射给药后的药动学参数比较可知,纳米粒组AUC值(2.805μg/mL ~*h)和t_(1/2β)(15.712h)明显高于注射液组AUC值(0.699μg/mL~*h)和t_(1/2β)(2.265h);纳米粒组药物清除率CL(0.006 L/h/kg)小于注射液组药物清除率CL(0.026 L/h/kg)。证明HCPT纳米粒静脉注射给药后,可显著延长药物在体内的存留时间及药物与靶组织器官的接触时间,具有缓释长效作用。
     6.小鼠组织分布试验表明HCPT制成纳米粒后,与HCPT注射液相比,药物在各组织器官的分布发生明显改变,结果显示:肝、脾的相对摄取率r_e分别为25.000和19.889;肝的总靶向效率T_e由9.21%提高到49.32%(5.36倍),脾的总靶向效率T_e由6.33%提高到26.98%(4.26倍),而肾的总靶向效率则由35.03%降至12.04%;肝脏内峰浓度提高至2.693倍,脾脏内峰浓度提高至4.816倍。表明该纳米粒具有显著的肝靶向性分布及较低的肾毒性。
     7.通过考察羟丙基-β-环糊精用量对纳米粒形态和粒径分布、表面电位、包封率和载药量、体外释药动力学及体外抗肿瘤活性等性质的影响,发现通过羟丙基-β-环糊精对纳米粒进行表面修饰后可起到减小粒径,降低表面负电性,提高包封率及载药量,延缓药物释放速率,增强体外抗肿瘤活性的作用,且上述影响与羟丙基-β-环糊精用量呈现出一定的剂量依赖关系。以此为依据可进一步改善药物疗效、作用时间及组织器官靶向性。
     8.体外释放试验结果表明,游离HCPT的体外释药过程可用一级动力学方程描述,4h药物已全部释放出来;对于HCPT-PBCA-NP,羟丙基-β-环糊精用量越大,纳米粒的缓释长效作用越明显。HCPT纳米粒的体外释放可用双相动力学方程拟合,前期为快速释药,后期缓慢释药。这种释药特点比较符合抗肿瘤药物的用药原则,即给药后到达靶部位可快速释放药物,以达到较高药物浓度发挥治疗作用;慢速释药可不断补充药物到靶部位以维持有效药物浓度,使制剂在较长时间发挥治疗作用。
     9.采用MTT比色法研究并比较HCPT-PBCA-NP及HCPT注射液对人肝癌细胞HepG-2体外生长及增殖的影响,评价体外抗肿瘤活性。结果表明,与HCPT注射液对照组相比,HCPT纳米粒在体外可有效抑制人肝癌细胞HepG-2的生长增殖,并具有一定的剂量依赖性;随着羟丙基-β-环糊精用量的增加,HCPT纳米粒的体外抗肿瘤活性也表现出不断增强的趋势。
In the present study,hydroxycamptothecin(HCPT)was taken as the model drug to prepare targeted-oriented hydroxycamptothecin nanoparticles drug system combined polybutylcyanoacrylate and hydroxypropyl-β-cyclodextrin (HCPT-PBCA-NP)by modern targeted drug delivery technique.The characteristics of distribution and pharmacokinetics in vivo were examined at the same time.The accomplishment of this project is a great achievement of nanoparticles drug system and develop a new idea,new method and new technique for targeted therapy of antitumor drugs.
     Hydroxycamptothecin(HCPT)is a kind of microamount alkaloids extracted from Camptotheca acuminata.The in vitro and vivo experiments were all revealed that HCPT had distinguished anti-tumour effect,wide anti-tumour pattern and achiasmate drug fast with other antineoplastic agents,it can be used to cure many kinds of malignancy.Now HCPT is generally used as an anti-tumour drug to cure liver cancer,stomach cancer,leukemia and many malignant tumors.However,its clinical applications are confined by its special physico-chemical properties(for example,it is insolubilize in water and difficultly dissolves in lipids,the lactone band is also instable),so its curative effects decrease and the intracorporal half life (t_(1/2)=5min)is too short.
     In the present study,HCPT was taken as the model drug to prepare hydroxycamptothecin nanoparticles combined polybutylcyanoacrylate and hydroxypropyl-β-cyclodextrin(HCPT-PBCA-NP)by modern targeted drug delivery technique.The emulsification evaporation method was used to prepare HCPT-PBCA-NP.According to the results of the effects of different variables, the uniform experimental design was applied to optimize the prescription and technology of preparation.The effects of the quantity of hydroxypropyl-β-cyclodextrin on the nanoparticles' characters were investigated and the nanoparticles were developed to improve the stabllitiy and extend the storage time using freeze-drying technology;The effects of HCPT-PBCA-NP on the growth of hepatoma carcinoma cell HepG-2 in vitro were investigated using MTT colorimetric method to evaluate the antineoplasmic activity;To establish the quality control standard for HCPT-PBCA-NP in vivo and in vitro,pharmacokinetics and tissue distribution in rabbits and mouse were investigated to evaluate its targeting efficacy.The main results were as follows:
     1.The particle shape and entrapment efficiency were taken as criterions to evaluate the effects of surfactant,temperature,mixing rate,mixing time,pH,the quantity of BCA and supplemental agents on the properties of HCPT-PBCA-NP after fixing the quantity of HCPT and hydroxypropyl-β-cyclodextrin.As a result,the quantity of BCA,Dxtran-70,PluronicF-68,NaHSO_3 and pH were proved to have great effect on the properties of HCPT-PBCA-NP.The uniform experimental design was applied to optimize the prescription and technology based on the entrapment efficiency of HCPT-PBCA-NP.The optimization is as follows:BCA was 70μL;Dxtran-70 was 15mg;PluronicF-68 was 15mg;NaHSO_3 was 120mg;pH was 3.0;mixing time was 3h;temperature was 25℃.
     2.To evaluate the physico-chemical properties and stabilities of nanoparticles which were prepared using the optimized formulation.From the transmission electron microscope observation,the nanoparticles were spherically shaped, ranged in uniformity size and had good dispersibility.The particle size was 137.4nm,the entrapment efficiency and drug loading were(78.56±2.17)%and (7.40±0.529)%;The zeta potential was-20.37±0.92mV,which attained the predicted objective.HCPT-PBCA-NP showed unstable under room temperature(about 25℃) for storing a long time;it showed preferable stability under cold storage,which indicated that nanoparticles needed to be stored under cold conditions(about 4℃) away from light.
     3.The nanoparticles were developed to improve stabllitiy and extend storage time using freeze-drying technology,8%manicol and 4%trehalose were choosen as freeze-drying protective agents.The freeze-drying effect of HCPT-PBCA-NP was examined using the qualities such as the particle size,particle distribution,zeta potential,entrapment efficiency and drug loading,and the results showed that HCPT-PBCA-NP freeze-drying preparation had good uniformity and dispersibility, but adhered slightly,compared with the colloidal solution,it had a little larger mean diameter(137.4nm to169.7nm),lower zeta potential(-20.37 mV to -22.59 mV), lower entrapment efficiency((78.56±2.17)%to(72.83±3.42)%)and drug loading ((7.40±0.529)to(6.27±0.368)%).
     4.Fluorospectrophotometry was established to investigate pharmacokinetic and drug distribution in rabbits and mouse.This method had a higher sensibility, better reproducibility and wide linear range,simple,fast and accurate.And during the treating process of these biological specimens,glacial acetic acid should be added earlier away from light for 4h to turn seco-HCPT to lactone pattern,then determined the fluorescence intensity(F)after precipitating proteinum with methanol- acetonitrile(1:1).The results satisfied the testing requests of biological specimens.
     5.The pharmacokinetic experiment of HCPT solution and HCPT nanoparticles was carded out on rabbits,and DAS 2.0 pharmacokinetics procedure was applied to calculate pharmacokinetic parameters and chose the best compartment method.The HCPT solution and HCPT-PBCA-NP were all fitted two compartment model after i.v.administrations.Compared with HCPT solution,the AUC of HCPT-PBCA-NP were increased and the retention time in blood were also prolonged, while CL were significantly reduced.As a result,the circulating time of the drug in blood was remarkedly prolonged which helped to increase the concentration of the drug in target organs for enhancing its curative effect.
     6.The tissue distribution of HCPT solution and HCPT-PBCA-NP was investigated after i.v.administrations into mouse.Compared with HCPT solution, HCPT-PBCA-NP injection distinctly changed the distribution of HCPT in vivo and increased the concentration of drug in target organs greatly.The relative taking efficiency(r_e)of liver and spleen were 25.000 and 19.889;the maximum concentrations(C_(max))of liver and spleen were enhanced by 2.693 times and 4.816 times;and the targeting efficiency(T_e)of liver and spleen were also improved from 9.21%to 49.32%(5.36 times)and 6.33%to 26.98%(4.26 times)respectivly, while T_e of kidney was cut down from 35.03%to 12.04%.In conclusion, HCPT-PBCA-NP could greatly increase the distribution of HCPT in liver and spleen with lower nephrotoxicity.
     7.Through the investigation about effects of hydroxypropyl-β-cyclodextrin on particle size,zeta potential,entrapment efficiency,drug loading,the release pharmacokinetics and antineoplasmic activity in vitro,we found that the nanoparticles' entrapment efficiency and drug loading could be raised,the superficial electronegativity became lower and the particle diameter became smaller combined with hydroxypropyl-β-cyclodextrin,which attained the predicted objective for delaying release rate,target distribution and improving the curative effect.
     8.The drug release behavior from HCPT solution and HCPT nanoparticles in vitro was in accord with first order kinetics model and double phase kinetics model respectivly.The HCPT-PBCA-NP release behavior showed sustained-release effect, HCPT released quickly during protophase and released slowly during anaphase,this characteristic consistented with the medication principle of antitumor drug,and the release rate became more and more slower with the increasing quantity of hydroxypropyl-β-cyclodextrin.
     9.The effects of HCPT solution and HCPT-PBCA-NP on the growth of hepatoma carcinoma cell HepG-2 in vitro were investigated using MTT colorimetric method to evaluate the antineoplasmic activity in vitro.As a result,compared with HCPT solution,HCPT-PBCA-NP had a active suppression on the growth of HepG-2 with dose dependent,and the antineoplasmic activity could be enhanced greatly with the increasing quantity of hydroxypropyl-β-cyclodextrin.
引文
[1]杨春娥,李宏力,高苏莉.抗肿瘤药物临床应用的现状与研究进展[J].国外医药抗生素分册,2004,25(1):30-33.
    [2]Shanma D,Chelvi TP,Kaur J,et al.Thermosensitive liposomal taxol formulation:heat-mediated targeted drug delivery in murine melanoma[J].Melanoma Res,1998,8(3):240-244.
    [3]张阳德,李亚勇.纳米控释系统在肿瘤治疗中的应用研究[J].中国现代医学杂志,2004,14(14):63-68.
    [4]欧阳斌,刘科秋,苗白超等.纳米药动学研究近况[J].武警医学,2004,15(11):854-855.
    [5]陆彬 主编.药剂学(第1版)[M].北京:中国医药科技出版社,2003:437.
    [6]Davis SS,Illum L.Polymeric microspheres as drug carriers[J].Biomaterials,1988,9:111.
    [7]Gibaud S,Demoy M,Andreux JP,et al.Cells involved in the capture of nanoparticles in hematopoietic organs[J].J Pharm Sci,1996,85(9):944.
    [8]Afee Mc Jc,Subramanian G,Aburano T,et al.A new formation of Tc-99minimicroaggregated albumin for marrow imaging[J].J Nucl Med,1982,23:21.
    [9]Couvereur P,Kante B,Roland,et al.Polycyanoacrylate nanoparticles as potential lysosomotropic carrier:Preparation,morphological and sorptive properties[J].J Pharm Pharmcol,1979,31:331.
    [10]Allemann E,Guvny R,Doelker E.Drug-loaded nanoparticles-preparation methods and drug targeting issues[J].Eur.J.Pharm.Biopharm.1993,39(5):173-191.
    [11]汪锡安 译.医用高分子[J].上海科学技术出版社,1980:231-267.
    [12]张志荣.肝靶向万乃洛韦毫微粒的研究[J].药学学报,1998,33(9):702-706.
    [13]彭应旭.骨髓靶向柔红霉素毫微粒的研究[J].中国医药工业杂志,2000,31(2):57-61.
    [14]蒋学华.吸附法制备阿克拉霉素A聚氰基丙烯酸正丁酯毫微粒的研究[J].中国药学杂志,1995,30(5):274-277.
    [15]Malam Aboubakar.Insulin-loaded Nanocapsules for Oral Administration:In Vitro and In Vivo Investigation[J].J Pharm Pharmcol,1979,31:331.
    [16]Dange C,et al.Polyalkylcyanoacrylate Nanospheres for Oral Administration of Insulin[J].J Pharm Sci,1999,86(12):1403-1409.
    [17]Lenearts V,Couvereur P,Christiaens LD,et al.Degratation of poly(isobutyl cyanoacrylate)nanoparticles[J].Biomaterials,1984,5(3):65.
    [18]Scherer D,Kreuter J,Robinion JR.Influence of enzymes on the degradation of PBCA-nanoparticles[J].Int J Pharm,1994,101:165.
    [19]Muller R.H,Lherm C,Herbort J,et al.In vitro model for the degradation of alkylcyanoacrylate nanoparticles[J].Biomaterials,1990,11(8):590.
    [20]Kante B,Couvreur P,Dubois KG,et al.Degradation of polyalkylcyanoacrylate nanoparticles I:Free nanoparticles[J].J Pharm Sci,1982,71(7):786.
    [21]Gipps EM,Groscurth P,Kreuter J,et al.Distribution of polyhexylcyanoacrylate nanoparticles in nude mice over entended times and after repeated injection[J].J Pharm Sci,1988,77(3):208.
    [22]张志荣,廖工铁.聚氰基丙烯酸酯毫微粒的研究进展[J].中国药学杂志,1994,29(6):323.
    [23]Douglas SJ,Illum L,Davis SS,et al.Particle size and size distribution of poly(butyl-2-cyanoacrylate)nanoparticles[J].J Colloid Inter Sci,1985,103:154.
    [24]任中海,仝运科,张成辉等.羟基喜树碱抗癌谱的实验研究[J].肿瘤防治杂志,2002,9(1):27-29.
    [25]徐丽婷,谢华.羟基喜树碱的药理作用及临床应用[J].医学导报,2002,21(5):302.
    [26]彭永富,栗艳,罗东,等.长江流域138家医院1999年-2001年抗肿瘤药物用药分析及其趋势预测[J].中国药房,2002,13(7):410-412.
    [27]Urasaki Y,Laco G,Takebayashi Y,et al.Use of camptothecinresistant mammalian cell lines to evaluate the role of topoisomerase Ⅰ in the antiproliferative activity of the indolocarbazole,NB-506,and its topoisomerase Ⅰ binding site[J].Cancer Res,2001,61(2):504-508.
    [28]Pommier Y,Pourquier P,Urasaki Y,et al.Topoisomerase Ⅰ inhibitors:selectivity and cellular resistance[J].Drug Resistance Updates,1999,2(5):307-318.
    [29]Jung LL,Zamboni WC.Cellular,Pharmacokinetic,and pharmacodynamic aspects of response to camptothecins:can we improve it?[J].Drug Resistance Updates,2001, 4(3):152-167.
    [30]刘键,胥彬.羟基喜树碱类药物作用机制及在合并治疗中机理的研究[J].中国肿瘤临床,1998,25(5):392-389.
    [31]周立新,王碧瑶,沈卫星,等.羟基喜树碱体外抗癌药敏的实验研究[J].中国肿瘤临床,2000,27(9):717-719.
    [32]石星,杨坤禹.羟基喜树碱为主治疗原发性肝癌临床疗效观察[J].中国中西医结合消化杂志,2001,9(3):148-149.
    [33]许青,王杰军,郭静,等.羟基喜树碱诱导人肺癌细胞SPC-A-1的凋亡[J].肿瘤,2000,20(1):11-12.
    [34]Ling YH,Xu B.Inhibition of phosphorylation of histone Hi&H3 induced by 10-hydroxycamptothecin,DNA topoisomerase Ⅰ Inhibitor,in murine ascites hepatomacells[J].Acta pharm Sin,1993,14(6):546-550.
    [35]张力,李苏,廖海,等.羟基喜树碱期药代动力学及人体耐受性临床研究[J].癌症,2001,20(12):1391-1395.
    [36]李书,姜文奇,张力,等.羟基喜树碱不同给药方式的药理学比较[J].中国临床药理学杂志,2001,17(6):427-430.
    [37]张帮慧.羟基喜树碱副作用的临床观察和护理[J].齐齐哈尔医学院学报,2001,22(3):304-306.
    [38]Zhang RW,Li Yf,Cai QY,et al.Preclinical pharmacology of the natural product anticancer agent 10-hydroxycamptothecin,an inhibitor of topoisomerase Ⅰ[J].Cancer Chemother Pharmacol.,1998,41(4):257-267.
    [39]上海市药物研究所.H~3-羟基喜树碱在小鼠体内的分布排泄[J].中国肿瘤临床,2000,27(8):31-33.
    [40]Fassberg J,Stella VJ.A kinetic and mechanistic study of the hydrolysis of Camptothecin and some analogues[J].J Pharm sci,1992,81(7):676-684.
    [41]张力,李苏,廖海.羟基喜树碱Ⅰ期药代动力学及人体耐受性临床研究[J].癌症,2001,20(12):1391-1395.
    [42]Shenderova A,Burke TG,Schwendeman SP.The acidic microciimate in poly-(lacid-co-glycoiide)micropheres stabilizies camptothecins[J].J Pharm Res,1999,16(2):241-248.
    [43]Chow DS,Gong L,Wolfe MD,et al.Modified lactone/carboxylate salt equilibria in vivo by liposome delivery of 9-nitor-camptothecin[J].Ann NY Acad Sci.2000,19(22): 164-174.
    [44]龚明涛,张钧寿,沈益.羟基喜树碱纳米乳的制备及抗癌作用初步研究[J].中国天然药物,2005,3(1):41-43.
    [45]杨时成,朱家壁,梁秉文等.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2):146-150.
    [46]谢伯泰,杨国武,谢薇梅.羟丙基-β-环糊精特性及其在医药领域中的应用[J].国外医药——合成药、生化药、制剂分册,2002,23(5):302-306.
    [47]陆彬 主编.药物新剂型与新技术[M].北京:人民卫生出版社,1998:310.
    [48]梅之南,杨祥良,徐辉碧.生物降解聚合物长循环纳米粒[J].中国医院药学杂志,2002,22(7):433-435.
    [49]唐晓荞,刘宏,杨祥良.双亲性环糊精纳米粒的制备和应用[J].中国医药工业杂志,2003,34(11):586-589.
    [50]Memisoglu E,Bochot A,Sen M,et al.Amphiphilic Beta- cyclodextrins modified on the primaryface:synthesis,characterization,and evaluation of their potential as novel excipients in the preparation of nanocapsules[J].J Pharm Sci,2002,91(5):1214-1224.
    [51]Duchene D,Ponchel G,Boudad H,et al.Use of cyclodextrins in the formulation of polyalkylcyanoacrylate nanoparticels charged with different active ingredients[J].Ann Pharm Fr,2001,59(6):384-391.
    [52]Da Silveira AM,Ponchel G,Puisieux F,et al.Combined poly(isobutyl cyanoacrylate)and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drags[J].J Pharm Res,1998,15(7):1051-1055.
    [53]陆彬 主编.药物新剂型与新技术[M].北京:人民卫生出版社,1998:123.
    [54]袁弘,胡富强,应晓英等.胰岛素纳米粒的制备[J].中国药学杂志,2002,37(5):249-352.
    [55]张典瑞,任天池,娄红祥等.冬凌草甲素硬脂酸固态类脂纳米粒的实验研究[J].中国药学杂志,2004,39(2):123-126.
    [56]张强,叶国庆,李晔等.环孢素A硬脂酸纳米球的实验研究[J].药学学报,1999,34(4):308-312
    [57]Chowdhary,RK,Shariff,I,Dolphin D,et al.Drug release characteristics of lipid based benzoporphyrin derivative[J].J Pharm Sci,2003,6,13-19.
    [58]陆彬 主编.药剂学[M].北京:中国医药科技出版社,2003,463-464.
    [59]Al-khouri NF,Treupel LR,Fessi H,et al.Development of a new process for the manufacture of polyisobutyl-cyanoacrylate nanocapsules[J].Int J Pharm,1986,28:125.
    [60]Francois C,Frederick EK,Leroux JC,et al.Preparation and purfication of polyisohexylcyanocrylate nanocapsules[J].Int J Pharm,1991,72:211.
    [61]张志荣,路伟.肝靶向羟基喜树碱缓释毫微粒的研究[J].药学学报,1997,32(3):222-227.
    [62]张志荣,廖工铁,钱文璨.均匀设计法优选米托葸醌毫微球的制备工艺[J].中国医院药学杂志,1994,14(6):246-249.
    [63]李瑞雪 主编.均匀设计在药物研究开发中的应用[J].四川科学技术出版社,2000:6.
    [64]黄芳,黄子杰.均匀设计及其在药学研究中的应用[J].数理医药学杂志,2007,20(5):612-614.
    [65]Hirayama F,Uekama K.Cyclodextrin-based controlled drug release system[J].Adv Drug Delivery Rev,1999,36(1):125-141.
    [66]Boudad H,Legrand P,Lebas G,et al.Combined hydroxypropyl-β-cyclodextrin and poly(alkycyanoacrylate)nanoparticles intended for oral administration of saquinavir[J].Int J Pharm,2001,218(1-2):113-124.
    [67]Duchene D,Wouessidjewe D,Ponchel G.Cyclodextfins and cartier systems[J].J Controlled Release,1999,62:263-268.
    [68]Duchene D,Ponchel G,Wouessidjewe D.Cyclodextrins in targeting application to nanoparticles[J].J Controlled Release,1999,36:29-40.
    [69]Zhou Jianjun,Liu Jian,Xu Bin.Relationship between lactone ring forms of HCPT and their antitumor activities[J].Acta Pharmacol Sin,2001,22(9):827-830.
    [70]Underberg,Goossen,Smith,et al.Equilibrium kinetics of the new experimental Antitumour compound SK&F104864-A in aqueous solution[J].J Pharm Biomed Anal,1990,8(8-12);681-684.
    [71]Harmia T,Speiser P,Kreuter J.Optimization of pilocarpine loading onto nanoparticles by sorption procedures[J].Int J Pharm,1986,33:45.
    [72]GasparV,Preat,Roland M.Nanoparticles of polyisohexylcyanoacrylate(PIHCA) as carriers of primaquine:formulation,physico-chemical characterization and acute toxicity[J].Int J Pharm,1991,68:111.
    [73]Alonso MJ,Losa C,et al.Approaches to improve the association of amikacin sulphate to poly(alkylcyanoacrylate)nanoparticles[J].Int J Pharm,1991,68:69.
    [74]Rawlins EA.Bentley's Textbook of Pharmoceutics[M].8th ed.London:Cassel and Collier Macmillan Publishers Ltd,1977:93.
    [75]孙东坡,胡一桥.蛋白质冷冻干燥制品中的保护剂及保护机制[J].药学进展,2003,27(4):436-438.
    [76]胡连栋,唐星,崔福德.维甲酸固体脂质纳米粒冷冻干燥工艺研究[J].中国医药工业杂志,2007,38(1):22-26.
    [77]吴燕,何文,代文兵等.羟基喜树碱包衣纳米脂质体的处方和制备工艺研究[J].中国药学杂志,2005,40(2):922-925.
    [78]陆彬 主编.药剂学[M].北京:中国医药科技出版社,2003,254-255.
    [79]Sola-Penna M,Meyer-Femandes J R.Stabilization against thermal inactivation promoted by sugars on enzyme structure and function:Why is trehalose more effective than other sugars[J].Arch Biochem Biophys,1998,360(1):10-14.
    [80]Lopez-Diez EC,Bone S.The interaction of trypsin with trehalose:an investigation of protein preservation mechanisms[J].Biochem Biophys Acta,2004,1673(3):139-148.
    [81]张玉华,凌沛学,籍保平等.糖类在生物活性物质冷冻干燥中的保护作用及其作用机制[J].中国生化药物杂志,2006,27(4):247-249.
    [82]Pyne A,Surana R,Suryanarayan R.Crytallization of mannitol below Tg during freeze—drying binary and ternary aqueous systems[J].J Pharm Res,2002,19(6):901-908.
    [83]Taylor L,York E.Effect of particle size and tempature on the dehydration kinetics of trehalose dihydrate[J].Int J Pharm,1998,167(1-2):215-221.
    [84]吴映蓉,张灿珍.测定小鼠血浆及组织中羟基喜树碱浓度的研究[J].中国药业,2002,11(9):30-32.
    [85]何文,吴燕,代文兵等.羟基喜树碱包衣纳米脂质体的制备及在小鼠体内组织分布的研究[J].中国药学杂志,2006,41(3):196-200.
    [86]王安训,李苏,丁学强等.羟基喜树碱纳米微球的制备及体内外释药特性[J].中国肿瘤临床,2006,33(1):12-15.
    [87]张景勍,陆彬.肺靶向卡铂明胶微球的药物动力学和体内分布研究[J].中国医药工业杂志,2001,32(6):251.
    [88]张明,侯世祥,龚涛等.肺靶向顺铂白蛋白微球在小鼠体内分布及肺器官中药代动力学研究[J].华西医科大学学报,1994,25(4):393.
    [89]毕殿洲 主编.药剂学(第四版)[M].北京:人民卫生出版社,2000:450.
    [90]Darid LE,Rayb,Eric B,et al.Antitumor efficacy,pharmcokineties,and biodistribution of NX211:A Low-clearance liposomal formulation of lurrotecan[J],Clini Canc Res,2000,6(7):2903-2912.
    [91]Lira,Paolab,Silviaa,et al.Preparation,characterization,cytotoxicity and pharmacokinetics of liposomes containing docetaxel[J].J Controlled Reslease,2003,91(5):417-429.
    [92]林元藻,王风山,王转花 主编.生化制药学[M],第一版.北京:人民卫生出版社,1998:17.
    [93]张志荣,廖工铁.米托葸醌毫微球体外释药规律考察[J].华西医科大学学报,1994,25(4):384.
    [94]Young-Ⅱ jeong,Myung-Ki Kang,Heung-Suk Sun,et al.All-trans-retinoic acid release from core-shell type nanoparticles of poly(ε-caprolactone)/poly(ethylene glycol)deblock copolymer[J].Int J Pharm,2004,273:95-107.
    [95]Yoo Sung Nam,Kil Joong Kim,Hyung Seok Kang,et al.Chemical Immobilization of Retinoic Acid within Poly(ε-caprolactone)Nanoparticles Based on Drug-Polymer Bioconjugates[J].J of Appl Polymer Science,2003,89:1631-1637.
    [96]H.S.Lin BSc,CS Chean BSc,YY Ng BSc,et al.2-Hydroxypropyl-β-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid[J].Int.J of Clinical and Therapeutics,2000,(25):265-269.
    [97]Duclairoir C,Orecchion AM,Depraetere P,et al.Evaluation of gliadins nanoparticles as drug delivery systems:a study of three different drugs[J].Int J Pharm,2003,253:133-144.
    [98]Kun Na,Keun-Hong Park,Sung Won Kim,et al.Self-assembled hyfrogel nanoparticles from curdlan derivatives:characterization,anti-cancer drug release and interaction with a hepatoma cell line(HepG2)[J].J Controlled Release,2000,69:225-236.
    [99]雷永,陆彬.可生物降解的PELA微球优化工艺的研究[J].华西药学杂志,1994,9(4):215.
    [100]张万国,蒋雪涛.肺靶向利福平聚乳酸微球的体外释药性能[J].中国医院药学杂志,1997,17(10):443.
    [101]韩晓冈,王燕婷,欧阳红荣.MTT法体外药敏试验研究进展[J].肿瘤,1999,19(1):55-57.
    [102]朱寿兴,朱建平,虞介昌.肿瘤细胞体外药物敏感试验MTT法在实体瘤中的应用[J].华西药学杂志,1998,13(3):154-156.
    [103]Mosman T.Rapid colorimetric assay for celluar growth and survival:application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65:55.
    [104]Yamau H,Tanimura H,Noguchi K,et al.Chemosensitivity testing of fresh human gastric cancer with highly purified tumour cells using the MTT assay[J].Br J Cancer,1992,66:793-794..
    [105]Sinha BK.Topoisomerase inhibiters:A review of their therapeutic potential in cancer[J].Drugs,1995,49:11-19.
    [106]Malonne H,Atassi G.DNA topoisomerases targeting drugs:mechanisms of action and perspectives[J].Anticancer Drugs,1997,8:811-822.
    [107]Zhang XW,Xu B.Differential regulation of p53,c-Myc,Bcl-2,Bax and AFP protein expression,and caspase activity during 10-hydroxycamptothecin induced apoptosis in HepG2 cells[J].Anticancer Drugs,2000,11:747-756.
    [108]Ling YH,Xu B.Inhibition of phosphoryalation of histone H1 and H2 induced by 10-hydroxyccamptothecin,DNA topoisomerase Ⅰ inhibitor,in murine ascites hepatoma cells[J].Acta Pharmacologyica Sinica,1993,14:546-550.
    [109]RI弗雷谢尼.动物细胞培养基本技术指南(分子克隆实验指南系列)[M].第4版.北京:科学出版社,2004:398-400.
    [110]刘昌孝,孙瑞元.药物评价实验设计与统计学基础[M].北京:军事医学科学出版社,2001:84-89.
    [111]Yam J,Reer PJ,Bruce RD.Comparison of the up-and-down method and the fixed-dose procedure for acute oral toxicity testing[M].Food Chem Toxicol.ENGLAND,1991:259-263.
    [112]Van den Heuvel M J,Clark DG,Fielder R J,et al.The international validation of a fixed-dose procedure as an alternative to the classical LD50 test[M].Food Chem Toxicol.ENGLAND,1990:469-482.
    [113]HalleW.The Registry of Cytotoxicity:toxicity testing in cell cultures to predict acute toxicity(LD50)and to reduce testing in animals[M].Altern Lab Anim.England,2003:89-198.
    [114]Schlede E,Genschow E,Spielmann H,et al.Oral acute toxic class method:a successful alternative to the oral LD50 test[M].Regul Toxicol Pharmacol.United States,2005:15-23.
    [115]Carmichael J,Draft WG,Gazdar AF,et al.Evaluation of a tetrazolium based semiautomated colorimetric assay:assessment of chemosensitivity testing[J].Cancer Res,1987,47:936
    [116]周建军,乐秀芳,韩家娴等.影响MTT方法测定结果的一些影响因素[J].肿瘤,1994,14(2):93.
    [117]方瑾,宋今丹.正交试验考察MTT方法在测定大肠癌细胞药物敏感性试验中的影响因素[J].癌症,1997,16(6):159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700