用户名: 密码: 验证码:
序批式生物膜—颗粒污泥系统同步脱氮除磷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命中不可缺少的要素之一。我国工农业生产快速发展、城市化进程逐步加快、人民生活水平不断提高,与此同时用水量和污水排放量也急剧增加。由于缺乏有效的污水处理和合理的水资源管理,导致我国大部分水域水质恶化,水生生态系统受到严重破坏,水污染问题日趋突出。目前,水资源缺乏和不合理利用问题日益严重,反过来又成为我国社会经济发展的制约因素,由此可见,我国水污染形势严峻,污水处理任务十分繁重。生活污水的排放逐渐增大,成为最大的水污染问题,其富含的氮,磷等营养物质要从水体中排除,就必须依靠污水的深度处理。研究和开发更节能,更高效的脱氮除磷新工艺是当前该领域的重点和难点。
     本研究针对现有的生物脱氮除磷工艺中构架组合繁多、能耗高、不易操作,体系内微生物间基质竞争激烈,泥龄长短不一,难以同时实现较高的脱氮除磷效率,出水水质较差的现象提出了新的工艺组合方式,结合了序批式运行模式,悬浮生物膜载体和颗粒污泥等优势方法,自行设计出IBGS-SBR同步脱氮除磷反应器。
     试验结果表明:采取较高温度和较低溶解氧的控制方式,能够快速实现亚硝的累积,并且COD、氨氮的去除率分别在88.1-92.7%和95.0-96.1%之间;实时控制,即利用活性污泥运行中DO和pH变化的规律性来反映生物脱氮的进程是维持稳定的亚硝化型硝化反应的关键;在固定供氧模式下,稳定的短程会在40个周期内迅速转化为全程。确定了在人工强化的挂膜方式下,ZH新型高效生物硝化菌填料为今后IBGS-SBR系统的最优填料。通过试验配水的调整,实现了聚磷菌的富集,并通过增加好氧时间和减少排水前沉降时间完成了其颗粒化过程。通过厌氧-缺氧-好氧和厌氧-缺氧两阶段的驯化,使体系中反硝化聚磷菌不断富集,最终成为优势菌种。
     在完成前期准备的各项工作后,对自行设计的反应器进行了阶段性调试,试验数据证明:从整体的工艺操作、反应时间、能量消耗等方面上部好氧,下部缺氧的运行方式具有显著优势,在对生活污水中营养物的去除方面较先厌氧后好氧,最后整体缺氧的运行方式相比也有一定的优势,氨氮的去除率达到83.4%-98.7%,磷的去除率为75.0%-86.7%。根据实际运行中出现的问题,及时对反应器进行调整,使IBGS-SBR系统达到更好的同步脱氮除磷效果。
Water is an indispensable element of life. With the rapid development of China's industrial and agricultural production, gradual speeding-up process of urbanization and people's living standards, water and sewage emissions have increased dramatically. Lacking of effective sewage treatment and rational water resources management, resulting in deterioration of China's most water quality, even aquatic ecosystems had been deteriorated, and water pollution problems have become more prominent. At present, water shortage and irrational usage, in turn, have become socio-economic development constraints. To exclude nitrogen, phosphorus and other nutrients from domestic sewage, we must rely on advanced treatment of sewage, explore more efficient nitrogen and phosphorus removal which is the current focus and difficult in the field of new technology.
     The disadvantages of existing simultaneous nitrogen and phosphorus removal technology include numerous structure combinations, high energy consumption, difficulty in operation, the substrate competition between microorganisms, sludge age of different lengths, which make it difficult to achieve high efficiency in simultaneously nitrogen and phosphorus removal. The study designed a IBGS-SBR simultaneous nitrogen and phosphorus removal system, at the advantages of sequencing batch operation mode, floating suspended carrier and granular sludge.
     The results showed that:in use of higher temperatures and lower dissolved oxygen control, the system could quickly realize high nitrite accumulation, and COD, ammonia nitrogen removal rates stayed between 88.1-92.7% and 95.0-96.1%; real-time control, namely the use of DO and pH regular changes in activated sludge operation to reflect the biological process of nitrification played a profound role in maintaining short-cut nitrification; due to oxygen supply in fixed mode, the stable short-cut nitrification changed into complete nitrification in only 40 cycles. In the artificial membrane mode, ZH new efficient suspended carrier of nitrification bacteria would be the best stuffing for IBGS-SBR system. Through the adjustment of water distribution, the research achieved a phosphorus accumulating enrichment, and completed the granular process., so that The system of denitrifying phosphorus bacteria were enriched and became dominant strain in two stages of anaerobic-anoxic-aerobic and anaerobic-oxygen.
     After all preparation work, the IBGS-SBR reactor designed to install and readjust. The results showed that the operating mode (upper aerobic and bottom anoxic) has a significant advantage at the overall process operation, reaction time and energy. Compared with the anaerobic-aerobic-anoxic operating mode, it still occupied a slight advantage, with the ammonia nitrogen removal rates of 83.4%-98.7%, and that of phosphorus 75.0%-86.7%. Faced with actual operation of the problems, some adjustments put into practice in time would help to achieve a better simultaneous nitrogen and phosphorus removal.
引文
[1]Tom Tietenberg. Environmental and natural resource economics. Economic Science Press. 2003,202-219.
    [2]任南琪,赵庆良.水污染控制原理与技术.北京:清华大学出版社.2007,218-241.
    [3]王荣斌,李军,张宁,宋玮华,何恒.海污水生物除磷技术研究进展.环境工程,2007,25(1):84-88.
    [4]吴昊.序批式移动床生物膜反应器处理生活污水的试验研究.湖南大学硕士学位论文.2008,18-15.
    [5]李亚新.活性污泥法理论与技术.北京:中国建筑工业出版社.2007,419-460.
    [6]黄荣新,李冬,张杰,李相昆,姜安玺,马立,鲍林林.电子受体亚硝酸氮在反硝化除磷过程中的作用.环境科学学报.2007,27:1141-1144.
    [7]Kuba T, Smolders G, Van Loosdrecht M, et al. Biological phosphorus removal from wastewater by anaerobic/anoxic sequencing batch reactor. Water Sci.Tech.,1993,27(5-6):241-252.
    [8]罗宁,罗固源.从细菌的生化特性看生物脱氮与生物除磷的关系.重庆环境科学,2003,5:33-36.
    [9]Meinhold J, Filipe C, Heijnen J. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal process. Water Sci.Tech.,1999,39(1):31-42.
    [10]Mino T, Van Loosdrecht M, Heijnen J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res.,1998,32(11):3193-3207.
    [11]Alm J, Daidou T, Tsuneda S, et al. Characteristics of denitrifying phosphate accumulating organisms cultivated in anaerobic/aerobic SBR. Preprint of 1st World Congress of the International Water Association, Paris,2000.
    [12]Kerrn-Jesperson J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions.Water Res.,1993,27(4):617-624.
    [13]Kuba T, van Loosdrecht M, Heijnen J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res.,1996,30(7):1701-1710.
    [14]郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(上).给水排水,1998,24(8):69-73.
    [15]HAO Xiao-di, LIU Zhuang, LIU Guo-jun. Policy and technology of phosphorus control and removal in Europe (Ⅱ).Water & Wastewater Engineering,1998,24(9):68-71.
    [16]De Kreuk M, Heijnen J, Van Loosdrecht M. Simultaneous COD, nitrogen and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng.2005,90 (6):761-769.
    [17]王芳,杨凤林,张兴文等.不同有机负荷下好氧颗粒污泥的特性.中国给水排水,2004,20(11):46-48.
    [18]杨国靖,李小明,曾光明等.利用好氧颗粒污泥实现同时除磷脱氮.中国给水排水,2005,21(2):18-22.
    [19]Satoshi Tsuneda, Takashi Ohno, Koichi Soejima, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in sequencing batch reactor. Biochemical Engineering Journal.2006,27:191-196.
    [20]张永丽,许唯临,刘钟文,刘应才.多孔悬浮填料SBR工艺和传统SBR工艺的对比研究.四川大学学报(工程科学版),2007,39(2):66-71.
    [21]刘超翔,胡洪营,彭党聪,王志盈,钱易.短程硝化反硝化工艺处理焦化高氨废水中国给水排水,2003,19(8):11-14.
    [22]郭海娟,马放,沈耀良.DO和pH值在短程硝化中的作用.环境污染治理技术与设备,2006,7(1):37-40.
    [23]高大文,彭永臻,潘威.SBR法短程硝化-反硝化生物脱氮工艺的研究环境污染治理技术与设备,2003,4(6):1-4.
    [24]高大文,彭永臻,郑庆柱.SBR工艺中短程硝化反硝化的过程控制.中国给水排水,2002,18(11):13-18.
    [25]高大文,彭永臻,王淑莹,梁红.利用ORP和pH控制豆制品废水的处理过程.哈尔滨工业大学学报,2003,35(6):647-650.
    [26]穗贤杰,韩青青,刘小英,赵红梅,彭党聪.N02-浓度对反硝化聚磷颗粒污泥缺氧吸磷的影响.环境污染与防治,2008,30(10):31-39.
    [27]王亚宜,李探微,韦甦,殷芳芳,林伟青.序批式生物膜技术(SBBR)的应用及其发展.浙江工业大学学报,2006,34(2):213-219.
    [28]王冬波,李小明,曾光明,等.内循环SBR反应器无厌氧段实现同步脱氮除磷.环境科学,2007,28(3):534-539.
    [29]代文臣,张捍民,肖景霓,杨凤林,张兴文,张新宇.序批式膜生物反应器中反硝化聚磷菌的富集,环境科学2007,28(3):517-521.
    [30]李勇智,李安安,彭永臻,李宇星.A2N-SBR双污泥反硝化生物除磷系统效能分析.京工商大学学报(自然科学版),2007,25(1):10-14.
    [31]鲍林林.硝化聚磷菌特性与反硝化除磷工艺研究.哈尔滨工业大学工学博士学位论文.2008..
    [32]Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus emoval in activated sludge systems. Water Res.,1996,30:769-780.
    [33]Kuba T, Van Loosdrecht M, Heijnen J. Biological dephosphatation by activated sludge under denitrifying conditions:pH influence and occurrence of denitrifying dephosphatation in a full scale wastewater treatment plant. Wat.Sci. Tech.,1997, 36(12):75-82.
    [34]Lacko N, Drysdale G D, Bux F. Anoxic phosphorus removal by denitrifying eterotrophic bacteria.Wat.Sci.Tech.,2003,47(11):17-22.
    [35]Kuba T., Smolders G, van Loosdrecht M, et al. Biological phosphorus removal from wastewater by anaerobic/anoxic sequencing batch reactor. Wat. ci.Tech.,1993,27(5-6):241-252.
    [36]耿朝安,洪林.废水生物处理发展与实践.第一版.沈阳:东北大学出版社,1997:189-201.
    [37]蒋展鹏.环境工程学(第二版).北京:高等教育出版社,2007,259-266.
    [38]陈坚,王强,堵国成.好氧颗粒污泥的形成及性质.无锡轻工业大学学报,2002.21(3).318-321.
    [39]杨国靖,李小明,曾光明,等.好氧颗粒污泥同步脱氮除磷研究的新进展.工业用水与废水,2004,35(6):10-13.
    [40]李军,彭永臻,杨秀山,等.序批式生物膜法反硝化除磷特性及其机理.中国环境科学,2004,24(2):219-223.
    [41]卢然超,张晓健,张悦,等.SBR工艺污泥颗粒化对生物脱氮除磷特性的研究.环境科学学报,2001,21(5):577-581.
    [42]杨国靖,李小明,曾光明,等.一体化生物除磷脱氮技术——反硝化除磷.环境科学与技术,2005,28(2):107-109.
    [43]方茜,张可方,张朝升,等.SBR法处理低碳城市污水的除磷规律.中国给水排水,2004,20(8):43-46.
    [44]魏琛,张晚凉.废水除磷工艺中聚磷菌及其缺氧态下吸磷现象.重庆环境科学,2000,22(4):44-46.
    [45]罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺.中国给水排水,2002,18(9):4-7.
    [46]李勇智,彭永臻,王淑滢,等.强化生物除磷体系中的反硝化除磷.中国环境科学,2003,23(5):543-546.
    [47]孔秀琴,王翥田,刘玉英,何乐萍.悬浮填料内循环脱氮除磷效能分析.重庆大学学报,2008,31:101-105.
    [48]高景峰.沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响.环境科学,2007,28:1245-1251.
    [49]张杰,李小明,杨麒,陈瑶.反硝化除磷技术及其实现新途径.工业用水与废水,2007,38:1-4.
    [50]张杰,李小明,杨麒,王冬波,曾光明,何端海.采用AOA模式在SBR中实现同步 脱氮除磷.中国给水排水,2007,23:19-22.
    [51]卢峰,杨殿海.反硝化除磷工艺的研究开发进展.中国给水排水,2003,19(9):32-34.
    [52]杨麒,李小明,曾光明,等.SBR系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学,2003,24(4):94-98.
    [53]张小玲,王志盈.短程反硝化聚磷的反硝化特征研究.环境污染治理技术与设备,2006,7:68-71.
    [54]高大文,彭永臻,王淑莹.不同方式实现短程硝化反硝化生物脱氮工艺的比较.中国环境科学,2004,24:618-622.
    [55]刘建广,付昆明,杨义飞,张维健.不同电子受体对反硝化除磷菌缺氧吸磷的影响.环境科学,2007,28:1472-1476.
    [56]Yang, Y, Inamori, Y, Ojima, H, et al. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics. Water Res.,2005,39:859-868.
    [57]ZhiJian Zhang, Jun Zhu, Jennifer King, WenHong Li. A two-step fed SBR for treating swine manure. Process Biochemistry.2006,41:892-900.
    [58]erzouki, N Bernet, M Benlemlih. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresearch Technology.2005,96:1317-1322.
    [59]Johwan Ahn, Tomotaka Daidou, Satoshi Tsuneda, and Akira Hirata. Metabolic Behavior of Denitrifying Phosphate-Accumulating Organisms under Nitrate and Nitrite Electron Acceptor Condition. Journal of Bioscience Bioengineering,2001,92:442-446.
    [60]Zhi-rong Hu, M.C. Wentzel, G.A. Ekama. Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems. Water Research.2002.36:4927-4937.
    [61]国家环境保护局.水与废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [62]樊力超,王增长.浅谈SBR处理污水工艺的特点及发展.科技情报开发与经济,2007,17(6):162-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700