用户名: 密码: 验证码:
铅锌尾矿区铅富集植物筛选及其吸收机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染已成为影响环境和威胁人类健康的重要问题。寻求成本低廉、化境负效应小的重金属污染修复方式受到环保和科研工作者研究的重视。利用富集植物修复土壤重金属污染已成为当今环境生态恢复的研究前沿。针对不同的土壤污染程度以及修复的目的,应当采取相应的植物修复方式。本研究通过对铅锌尾矿区上所生长的自然定居植物进行重金属吸收评价,筛选铅富集能力差异较大的矿山生态型和非矿山生态型植物种类,结合室内盆栽试验,验证了两种生态型对铅的富集能力差异,铅对富集植物生理机制的伤害以及植物的抗氧化酶在铅胁迫下的作用。主要研究结果如下:
     1、矿区土壤重金属污染严重,选择和筛选富集重金属或对重金属具有耐性的植物是矿山污染修复和生态重建的前提和关键。该研究通过对荥经县三合乡铅锌尾矿区的土壤和植被进行调查,共采集15科22种植物,并对矿区土壤及植物的Pb、Zn积累特性进行了分析。结果表明:尾矿区土壤受到不同程度的Pb、Zn污染,土壤中最高的Pb、Zn含量已严重超标。所测植物当中,没有一种植物符合超富集植物的标准,大部分植物为重金属排斥型植物。其中华中蹄盖蕨(Athyrium wardii)和香附子(Cyperus rotundus)两种植物根部Pb、Zn含量分别能够达到11086.7mg kg-1、7626.8mg kg-1和4634.6 mg kg-1、5908.2 mg kg-1,且对Pb、Zn的转运能力极低。这些植物对Pb、Zn污染有很强的耐性能力,对污染土壤治理和植被重建具有一定的实践意义。
     2、为筛选出适合稳定修复矿区Pb污染土壤的耐性植物,该研究在植物的三个生长时期采集了铅锌尾矿区的9种优势植物并同时采集非矿山生态型,对比其对铅的稳定修复能力。结果表明:矿山生态型优势植物根部富集能力大于地上部。所测植物中,不同生长时期的矿山生态型华中蹄盖蕨根部含量均最高,在生长前期和生长旺盛时期分别可以达到15542.1和10720.1mg kg-1,为非矿山生态型的426和455倍,其转运系数极低,铅在根部积累量可以达到42mg plant-1。矿山生态型华中蹄盖蕨根际土壤有效态铅含量为310mg kg-1,是非矿山生态型的17倍。矿山生态型植物根部铅含量与对应的根际土壤有效态铅含量未能达到显著相关,说明矿山生态型华中蹄盖蕨根部对铅的吸收能力不完全取决于土壤中铅含量的高低,还与其自身特性相关,所以这种植物对铅耐性很强,对于稳定修复污染土壤具有潜力,可作为尾矿区稳定修复Pb污染土壤的新材料。
     3、经过前期筛选,为验证对铅的吸收与耐性机理,分别采集三合铅锌矿的矿山生态型和未被污染的非矿山生态型华中蹄盖蕨进行盆栽试验。结果表明,随着土壤中铅含量的增加,两种生态型华中蹄盖蕨地上部生物量显著下降,矿山生态型为非矿山生态型的1.5倍以上。矿山生态型地上部和根部铅含量在800mg kg-1处理时达到最大值,分别为非矿山生态型的3.5和3倍。在铅处理下,两种生态型华中蹄盖蕨表现出很强的根部富集能力。两种生态型叶绿素a和叶绿素b的含量随铅浓度的增加而下降。铅处理使非矿山生态型膜质过氧化和膜透性不断增大,而矿山生态型则在高浓度下都出现下降。矿山生态型华中蹄盖蕨叶片CAT、POD和SOD在600和800mg kg-1处理时达到最大值,而非矿山生态型的抗氧化酶活性小于矿山生态型。因此,矿山生态型华中蹄盖蕨对铅具有很强的耐性,对于稳定修复铅污染土壤有很大的潜力。
In recent years, heavy metal pollution of soils has become a widespread problem. It originates from continuous exploitation of mineral resources, electronic waste, sewage sludge, and wide usage of fertilizers, herbicides and pesticides. An alternative and widely-used approach with great advantages over traditional methods is phytoremediation of soil heavy metals, which is cost-effective and ecologically friendly. It is important to choose the right phytoremediation strategy for each polluted area. Phytoremediation includes both phytoextraction (removal of metals from soil through hyperaccumulators) and phytostabilization (accumulation of metals into root tissue or precipitation in the root zone). In this study, plant species growing on lead-zinc mine tailing and their corresponding non-mining ecotypes were investigated for their potential phytostabilization of lead. The differences of accumulative ability and effective of physical and chemical charateristics of two ecotypes were analysed under pot experiment. The main results are as follow:
     1. Land contaminated by high level of heavy metals in mining area is urgent to be remediated. To find out the accumulator and tolerant plants is the premise of vegetation reconstruction. A field survey on soils and plants growing at the tailing in the Sanhe lead-zinc mining area was carried out. The concentrations of Pb and Zn in soil and 22 plant species which belong to 15 families were analyzed. The results showed that the soils have been polluted in varying degrees, and the highest concentration in the soil samples were dramatically higher than the national soil limitation values for plant growth. Among the tested plants, none of them can be hyperaccumulator and most of them were plant of exclusion. Especially for Athyrium wardii and Cyperus rotundus which can accumulate high Pb and Zn in roots (11086.7mg kg-1 and 7626.8mg kg-1; 4634.6 mg kg-1 and 5908.2 mg kg-1, respectively) and transfer few up to the shoots. Furthermore, those plants had strong tolerance to heavy metal contamination, which indicated that they could be useful for harnessing and rehabilitating contaminated soils by heavy metals in the future.
     2. Screening out plants that are hyper-tolerant to certain heavy metals plays a fundamental role in remediation of mine tailing. In this study, nine dominant plant species growing on lead-zinc mine tailing and their corresponding non-mining ecotypes were investigated for their potential phytostabilization of lead. Lead concentration in roots of these plants was higher than in shoots, and the highest concentrations of lead were found in A. wardii (L1):15542 and 10720 mg kg-1 in the early growth stage (May) and vigorous growth stage (August), respectively, which were 426 and 455 times higher than those of the non-mining ecotypes. Because of poor lead translocation ability, lead accumulation in roots reached as high as 42 mg per plant. Available lead in the rhizosphere soils of Athyrium wardii was 310 mg kg-1, which was 17 times higher than that of the non-rhizosphere soil. Lead concentrations of roots for the 9 mining ecotypes were positively correlated with available lead in the rhizosphere soils, whereas a negative correlation was observed in the non-mining ecotypes. These results suggest that A. wardii was the most promising candidate among the tested species for lead accumulation in roots, and it could be used for phytostabilization in lead-polluted soils.
     3. Lead (Pb) pollution poses great threats to human health and can trigger serious environmental consequences. Phytoremediation has been considered an environmentally-friendly means of removing Pb from an affected area. The A. wardii, a new plant with potential for phytostabilization of Pb, has been found by a survey of plant species in a mine tailing of lead-zinc in Yingjing county of Sichuan province in China. Thus the growth, Pb concentration and some physiological and biochemical characteristics of mining ecotypes (ME) and the non-mining ecotypes (NME) were analyzed and discussed by pot experiments of A. wardii with different concentrations of Pb(NO3)2 in tested soil during four weeks. The results show that the A. wardii is of a higher tolerance to excessive levels of Pb in the soils. There was a significant decrease (P<0.05) in shoot biomass under Pb treatments in both ecotypes, and the shoot biomass of ME was 1.5 times higher than that of NME. On the condition of 800 mg Pb kg-1 treatment, the concentration of Pb in shoots and roots of the ME was most high, and was 3.5 and 3.0 times higher than those of the NME, respectively. The chlorophyll a and chlorophyll b in the leaves of both ecotypes decreased with increasing Pb concentration. The trend of lipid peroxidation and membrane damage of the ME and NME gradually increased, but declined markedly at the highest Pb treatment of ME. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were most high at the Pb concentration of 600 or 800 mg Pb kg-1 of ME, and then decreased. The higher tolerance to Pb displayed in the ME was due to greater shoot biomass, root concentration, chlorophyll content and activities of antioxidant enzymes than those of the NME. The ME also was of lower lipid peroxidation products and membrane permeability. Therefore, the mining ecotype of A. wardii has potential phytostabilization of Pb contaminated soils.
引文
[1]安志装,陈同斌,雷梅,等.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,23(12):4952-4956.
    [2]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):204-210.
    [3]崔爽,周启星,晁雷.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报,2006,17(3):512-515.
    [4]戴树桂,刘小琴,徐鹤.污染土壤的植物修复技术进展.上海环境科学,1998,17(9):25-27,31.
    [5]高梁.土壤污染及其防治措施[J].农业环境保护,1992,11(6):272-273.
    [6]郭水良,李扬汉.杂草的基本特点及其在丰富栽培地生物多样性中的作用[J].资源科学,1996,(3):48-53.
    [7]黄化刚,李廷轩,杨肖娥,等.植物对铅胁迫的耐性及其解毒机制研究进展[J].应用生态学报,2009,20(3):696-704.
    [8]何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学学报,2003,22(3):274-278.
    [9]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [10]蒋启,江鸿.我国采矿业走向有序轨道任重道远[J].中国非金属矿工业导刊,2005,2(46):59-61.
    [11]柯文山,陈建军,黄邦全,等.十字花科芸薹属5种植物对Pb的吸收和富集[J].湖北大学学报(自然科学版,2004,26(3):236-238.
    [12]旷远文,温达志,钟传文,等.根系分泌物及其在植物修复中的作用[J].植物生态学报,2003,27(5):709-717.
    [13]雷梅,岳庆玲,陈同斌,等.湖南柿竹园矿区土壤重金属含量及植物吸收特征[J].生态学报,2005,25(5):1146-1151.
    [14]李文一,徐卫红,李仰锐,等.重金属污染土壤植物修复机理研究[J].广东农业科学,2006,4:79-81.
    [15]李永庚,蒋高明.矿业废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [16]林治庆,黄会一.木本植物对汞污染耐性的研究[J].生态学报,1989,9(4):315-319.
    [17]刘威,束文圣,兰崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [18]刘秀梅,聂俊华,王庆仁.6种植物对Pb的吸收与耐性研究.植物生态学报,2002,26(5):533-537.
    [19]刘益贵,彭克俭,沈振国.湖南湘西铅锌矿区植物对重金属的积累[J].生态环境2008,17(3):1042-1048.
    [20]吕朝晖,王焕校.镉铅对小麦醇脱氢酶(ADH)基因表达影响的初步研究[J].环境科学 报,1998,18(5):500-503.
    [21]罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003,20(1):59-66.
    [22]罗立新,孙铁珩,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境
    学,1998,18(1):72-75.
    [23]骆永明.金属污染土壤的植物修复[J].土壤,1999,5:261-265.
    [24]马成仓,李清芳.Ca对汞毒害下的小麦种子萌发代谢的影响[J].农业环境保护,2000,19(3):173-175.
    [25]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [26]聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报2004,20(4):255-258.
    [27]闰晓明,何金柱,苗青松.污染土壤植物修复技术研究进展[J].中国生态农业学
    报,2004,12(3):131-133.
    [28]沈宏,严小龙.根分泌物研究现状及其在农业与环境领域的应用[J].农村生态环境,2000,
    16(3):51-54.
    [29]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44.
    [30]施农农,陈志伟,贾秀英.镉胁迫下水稻种子的萌芽生长及体内水解酶的活性变化[J].农业环境保
    护,1999,18(5):213-216.
    [31]束文圣,杨开颜,张志权,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应
    用与环境生物学报,2001,7(1):7-12.
    [32]孙健,铁柏清,秦普丰,等.铅锌矿区土壤和植物重金属污染调查分析[J].植物资源与环境学
    报,2006,15(2):63-67.
    [33]孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学
    报,2005,29(3):497-504.
    [34]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环
    境,2002,11(1):85-89.
    [35]王广林,王立龙,李征,等.杂草对土壤重金属的富集与含量特征研究[J].生态学杂志,2005,24(6):639-643.
    [36]王庆仁,刘秀梅,董艺婷,等.典型重工业与污灌溉区植物的重金属污染状况及特征.农业环境保护,2002,21(2):115-118,149.
    [37]王松良,郑金贵.芸薹属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农林大学学报
    (自然科学版),2004,33(1):94-99.
    [38]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [39]魏树和,周启星,刘睿.重金属污染土壤修复中杂草资源的利用[J].自然资源学报,2005,20(3):432-440.
    [40]魏树和,周启星,王新,等.农田杂草的重金属超富集特性研究[J].中国环境科学,2004,24(1):105-109.
    [41]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,7(3):72-76.
    [42]熊治廷编著.环境生物学[M].武汉.武汉大学出版社,2000,384-385.
    [43]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物商陆[J].生态学报,2003,23(5):935-937.
    [44]严重玲,洪业汤.Cd.Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492.
    [45]严重玲,钟章成.土壤中Pb.Hg及其交互作用对烟草叶片抗氧化酶的影响[J].环境科学学报,1997,17(4):469-473.
    [46]杨金燕,杨肖娥,何振立.土壤中铅的来源及生物有效性[J].土壤通报,2005,36(5):667-772.
    [47]杨居荣,鲍子平,张素芹.镉铅在植物体内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268.
    [48]杨仁斌,曾清如.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,2000,19(3):152-155.
    [49]杨肖娥,龙新宪,倪吾钟,等.古老铅锌矿山生态型东南景天对锌耐性及超积累特征的研究[J].植物生态学报,2001,25(6):665-672.
    [50]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)——一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006.
    [51]杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693-695.
    [52]叶春和.紫花首稽对铅污染土壤修复能力及其机理研究.土壤与环境,2002,11(4):331-334.
    [53]张慧智,刘云国,黄宝荣,等.锰矿尾渣污染土壤上植物受重金属污染状况调查[J].生态学杂志,2004,23(1):111-113.
    [54]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-201.
    [55]郑洁敏,楼丽萍,王世恒,等.一种新发现的铜积累植物——密毛蕨[J].应用生态学报,2006,17(3):507-511.
    [56]周长芳,吴国荣,陆长梅,等.铅污染对螺旋藻生长及某些生理性状的影响[J].湖泊科学,1999,11(2):135-140.
    [57]周国华,黄怀曾,何红要.重金属污染土壤植物修复及进展.环境污染防治治理技术与设备,2002,3(6):33-39
    [58]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:139-140.
    [59]周启星,宋玉芳.植物修复的技术内涵及展望[J].安全与环境学报,2001,1(3):48-53.
    [60]周青,黄晓华,屠昆岗,等.La对Cd伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18(5):442-445.
    [61]周涛发,李湘凌,袁峰,等.金属矿区土壤重金属污染的植物修复研究现状[J].地质评 论,2008,54(4):515-522.
    [62]Alkorta I, Garbisu C. Phytoremediation of organic contaminants in soils [J]. Bioresour. Technol., 2001,79:273-276.
    [63]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. J. Exp. Bot.,2002,53:1331-1341.
    [64]Alvarenga P, Goncalves A P, Fernandes R M, et al. Evaluation of composts and liming materials in the phytostabilizatio of a mine soil using perennial ryegrass[J]. Sci. total environ.,2008,406:43-56.
    [65]Aneta P, Barbara T, Danuta B, et al. Accumulation and detoxification of lead ions in legumes [J]. Phytochemistry,2002,60:53-162.
    [66]Baker A J M, Proctoy I, Reeves R D. Proceedings of the First International Conference on Serpentine Ecology [C]. Intercept Ltd.,1996:291-303.
    [67]Baker A J M. Metal tolerance [J]. New Phytol.,1987,106:93-111.
    [68]Boularbah A, Schwartz C, Bitton G, et al. Heavy metal contamination from mining sites in South Morocco:Assessment of metal accumulation and toxicity in plants [J]. Chemosphere,2006,63: 811-817.
    [69]Brooks R R, Chambers M F, Nicks L J, et al. Phytomining [J]. Trends Plant Sci.,1998,3(9): 359-362.
    [70]Brooks R R. Plants that hyperaccumulate heavy metals [J]. CAB international,1989,1-2.
    [71]Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase, and glutathione reductase in bean leaves [J]. Plant Physiol.,1992,98:1222-1227.
    [72]Cao X, Ma L Q, Rhue D R, Appel C S. Mechanisms of lead, copper and zinc retention by phosphate rock [J]. Environ. Pollut.,2004,131:435-444.
    [73]Cao X, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.) [J]. Environ. Pollut.,2004,128:317-325.
    [74]Carlos G, Itziar A. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J]. Bioresour. Technol.,2001,77:229-236.
    [75]Chaney R L, Malik M, Li Y M. Phytoremediation of soil metals [J]. Current Opinions Biotechnol., 1997,8:79-284.
    [76]Chaturvedi P K, Seth C S, Misra V. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing [J]. J. Hazard. Mater.,2007, 147:698-705.
    [77]Claudia S, Cesar V, Rosanna G. Phytostabilization of copper mine tailings with biosolids: Implications for metal uptake and productivity of Lolium perenne [J]. Sci. Total Environ.,2008,395: 1-10.
    [78]Cobb G P, Sands K, Waters M, et al. Accumulation of metals by vegetables grown in mine wastes [J]. Environ. Toxicol. Chem.,2000,19:600-607.
    [79]Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils [J]. Trends Biotechnol.,1995,13:393-397.
    [80]Cunningham S D, Shan J R, Crowley J R, et al. Phytoremediation of contaminated water and soil [M]. In:Kruger, E.L., Anderson, T.A., Coats, J.R. (Eds.), Phytoremediation of Soil and Water Contaminants. American Chemical Society, Washington, DC,1997,2-17.
    [81]Dhanda G S, Sethi R K, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth[J]. J. Agron. Crop Sci.,2004,190:6-12.
    [82]Dixit V, Pandey V, Shyam R, Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum) [J]. J. Exp. Bot.,2001,52:1101-1109.
    [83]Fatima R A, Ahmad M. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater [J]. Sci. Total Environ.,2004,346:256-273.
    [84]Foyer C H, Lopez-Delgado H, Dat J F, et al. Hydrogen peroxide and glutathion-associated mechanisms of acclimatory stress tolerance and signaling [J]. Physiol. Plant,1997,100:241-254.
    [85]Garbisu C, Alkorta I. Phytoextraction:a cost effective plant based technology for the removal of metals from the environment [J]. Bioresour. Technol.,2001,77:229-236.
    [86]Gopal R, Rizvi A H. Excess lead alters growth, metabolism and translocation of certain nutrients in radish [J]. Chmosphere,2008,70:1539-1544.
    [87]Gonzalez R C M, Gonzalez-Chavez C A. Metal accumulation in wild plants surrounding mining wastes [J]. Environ. Pollut.,2006,144:84-92.
    [88]Guerinot M L, Eide D. Zeroing in on zinc uptake in yeast and plants [J]. Curr. Opin. Plant Biol., 1999,2:244-249.
    [89]Gwordk B. Lead inactivation in soils by zeolites [J]. Plant Soil,1992,143:71-74.
    [90]Islam E, Liu D, Li T, et al. Effect of toxicity of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi [J]. J. Hazar. Mat.,2007,154:914-926.
    [91]Johansson L, Xydas C, Messios N, et al. Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus [J]. Appl. Geochem.,2005,20:101-107.
    [92]Kastori R, Plesniear M, Sakae Z, et al. Ⅰ. Effect of excess lead on sunflower growth and photosynthesis [J]. J. Plant Nutr.,1998,21(1):75-85
    [93]Kopittke P M, Asher C J, Kopittke R A, et al. Toxic effects of Pb2+ on growth of cowpea (Figna unguiculata) [J]. Environ. Pollut.,2007,150:280-287.
    [94]Kumar P B A N, Dushenkov V, Motto H, et al. Phytoextraction:the use of plants to remove heavy metals from soils [J]. Environ. Sci. Technol.,1995,29:1232-1238.
    [95]Lasat M, Baker A J M, Kochian L V. Physiological Characterization of root Zn absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi [J]. Plant physiol.,1996,112:1715-1722.
    [96]Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:a review of research and practice [J]. Sci. Total Environ.,2005,3:38-53.
    [97]Lin Q, Mendelssohn I A. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands [J]. Ecol. Eng., 1998,10:263-274.
    [98]Long X X, Yang X E, Ye Z Q, et al. Differences of uptake and accumulation of zinc in four species of Sedum [J]. Acta Bot. Sin.,2002,44(2):152-157.
    [99]Lutts S, Kinet J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance [J]. Ann. Bot.,1996,78:389-398.
    [100]MacFarlane G R. Chlorophyll a fluorescence as a potential biomarker of zinc stress in the grey mangrove, Avicennia marina B [J]. Environ. Contam. Tox.,2003,70:90-96.
    [101]McGowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil [J]. J. Environ. Qual.,2001,30:493-500.
    [102]Melamed R, Cao X, Chen M, et al. Field assessment of lead immobilization in a contaminated soil after phosphate application [J]. Sci. Total Environ.,2003,305:117-127.
    [103]Mendez M O, Glenn E P, Maier R M. Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes [J]. J. Environ. Qual.,2007,36: 245-253.
    [104]Mendez M O, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology [J]. Environ. Health Perspect,2008,116:278-283.
    [105]Mishra S, Srivastava S, Tripathi R D, et al. Lead detoxification by coontail(Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation [J]. Chemosphere,2006,65:1027-1039.
    [106]Navari-Lazzo F, Quartacci M F. Phytoremediation of metals. Tolerance mechanisms against oxidative stress [J]. Miner. Biotechnol.,2001,13:73-83.
    [107]Peng S L. Restoration ecology and vegetation reconstruction [J]. Ecol. Sci.,1996,15 (2):26-31.
    [108]Pulford I D, Watson C. Phytoremediation of heavy metal contaminated land by trees are view [J]. Environ. Inter.,2003,29:529-540.
    [109]Rabinowitz M B. Modifying soil lead bioavailability by phosphate addition [J]. Bull. Environ. Contam.,1993,51:438-444.
    [110]Rao K V M, Sresty T V S. Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses [J]. Plant Sci.,2000,157:113-128.
    [111]Reddy A M, Kumar S G, Jyonthsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) [J]. Chemospere,2005,60:97-104.
    [112]Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants [J]. Mining Environ. Manage.,1995,9:4-8.
    [113]Rosario K, Iverson S L, Henderson D A, et al. Bacterial community changes during plant establishment at the San Pedro River mine tailings site [J]. J. Environ. Qual.,2007,36:1249-1259.
    [114]Rotkittikhun P, Kruatrachue M, Chaiyarat R, et al. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand [J]. Envior. Pollut.,2006,144:681-688.
    [115]Ruley A T, Sharma N C, Sahi S V, et al. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil [J]. Environ. Pollut.,2005,144:11-18.
    [116]Salt D E, Blaylock M, Kumar N, et al. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants [J]. Biotechnol.,1995,13:468-474.
    [117]Santibanez C, Verdugo C, Ginocchio R. Phytostabilization of copper mine tailings with biosolids: Implications for metal uptake and productivity of Lolium perenne [J]. Sci. Total Environ.,2008,395: 1-10.
    [118]Schwartz C, Eehevarria G, Morel J L. Phytoextraction of cadmium with Thlaspi caerulescens [J]. Plant Soil,2003,249:27-35.
    [119]Seregin I V, Kozhevnikova A D, Kazyumina E M, et al. Nickel toxicity and distribution in Maize roots [J]. Plant Physiol.,2003,50(5):711-717.
    [120]Sharma P, Dubey R S. Lead toxicity in plants [J]. Braz. J. Plant Physiol.2005,17:35-52.
    [121]Shaw K, Kumar R G, Verma S, et al. Effect of Cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci.,2001,161: 1135-1144.
    [122]Srivastava S, Tripathi R D, Dwivedi U N. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite [J]. J. Plant. Physiol.,2004,161:665-674.
    [123]Tater E, Mihucz V G, Varga A, et al. Determination of organic acids in xylem sap of cucumber: Effect of lead contamination [J]. Microchem. J.,1998,58:306-314.
    [124]Tewari R K, Kumar P, Sharma P N, et al. Modulation of oxidative stress responsive enzymes by excess cobalt [J]. Plant Sci.,2002,162:381-388.
    [125]Trivedi S, Erdei L. Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ statrs [J]. Physiol. Plantarum,1992,84: 94-100.
    [126]Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thaiin digenous plant species for the phytoremediation of arsenic contaminated land [J]. Environ. Pollut.,2002,118:453-461.
    [127]Walker D J, Clemente R, Bernal M P. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in soil contaminated by pyritic mine waste [J]. Chemosphere,2004,57:215-224.
    [128]Wang H X ed. Pollution Ecology [M]. Beijing:Higher Education Press,2000.189.
    [129]Watanabe M A. Phytoremediation on the brink of commercialization [J]. Environ. Sci. Technol., 1997,31:182A-186A.
    [130]Wei S H, Zhou Q X, Wang X, et al. Potential of weed species applied to remediation of soils contaminated with heavy metal [J]. J. Environl. Sci.,2004,16(5):868-873.
    [131]Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils [J]. Chemosphere,2003,50:775-80.
    [132]Yang S H, Qu Z X, Wang H X. The migration and accumulation of lead in rice and its influence on the growth [J]. Ecol Sin.,1986,6(4):312-322.
    [133]Zhang F, Wang Y, Lou Z, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) [J]. Chemosphere,2007,67:44-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700