用户名: 密码: 验证码:
环氧氯丙烷废水生物处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以环氧氯丙烷废水为研究对象,通过活性污泥驯化,研究氯离子浓度变化对污泥浓度、微生物群落、耗氧速率和COD去除率的影响;同时采用固定化微生物技术研究固定化耐盐细菌对环氧氯丙烷的降解性能。
     活性污泥驯化的实验结果表明:污泥浓度随氯离子浓度的增加而下降,最后趋于平稳。活性污泥由灰褐色变为黄褐色,驯化后污泥具有良好的絮凝性能,停止曝气后,能迅速形成较大的絮状物,而沉淀后出水中悬浮物很少。
     污泥驯化过程中,随氯离子浓度的升高,系统内微生物的组成也发生变化。在低氯离子浓度时,镜检发现微生物种类丰富,伴有钟虫。在高氯离子浓度时,微生物的种类和数量都变少。通过对驯化和未驯化两组污泥微生物提取DNA进行分析,发现经过耐盐驯化后的活性污泥中微生物的优势菌群较未驯化活性污泥的优势菌群发生了变化。
     污泥驯化过程中,随污泥系统氯离子浓度的增加,出水COD的去除率由96%下降至75%左右。利用好氧活性污泥对环氧氯丙烷废水进行生物降解实验研究,根据Grau实验模型,氯离子浓度为2g/L和12g/L的动力学模型。
     通过对A/O+MBBR的工艺研究,可以确定工艺参数如下:水力停留时间:厌氧为24h,好氧为12h,MBBR为12h,共48h;好氧段pH维持在7-8,可使系统对COD的去除率稳定在80%以上。
     固定化微生物处理环氧氯丙烷废水的实验,考察了固定化方法、载体材料、环境条件对处理环氧氯丙烷废水的影响。实验结果表明:聚乙烯醇-海藻酸包埋法优于吸附法,凝胶剂配比为聚乙烯醇:海藻酸为10∶1.5,交联剂配比H3BO3:CaCl2为6∶1,当废水pH调节到7,微球接种量为20%,活化时间为稳定期16h,环境温度为30℃时,固定化微生物对环氧氯丙烷的降解率可以达到80%以上。
This paper takes the epichlorohydrin wastewater as an object,in which the influence ofchloride ion concentration’s change on sludge concentration, microbial community, oxygenconsumption rate and the COD removal rate was studied by activated sludge acclimationexperiment. At the same time, the immobilized microorganisms technology was used to studythe degradation performance of immobilized halotolerant bacteria to epichlorohydrin.
     The experimental results of activated sludge acclimation showed that the sludgeconcentration decreased with the increase of chloride ion concentration, and finally stabilized.The activated sludge changed yellow-brown from gray-brown and had a good flocculationperformance after acclimation, which could form larger floc rapidly after cessation of aerationand the suspended solid of effluent was rare after precipitation.
     In the process of sludge domestication, the composition of microbes in system changedwith the increase of chloride ion concentration. At low chloride ion concentration, themicroscopic examination showed abundant microbial species associated with campanula. Athigh chloride ion concentration, the types and quantities of microorganisms were both gettingfewer. It could be found that the dominant microorganisms in activated sludge acclimated bysalt-resistent changed comparing to non-acclimated sludge through the analysis to the DNAextracted from microbial groups in acclimated and non-acclimated sludge.
     In the process of sludge acclimation, the COD removal rate of effluent decreased from96% to about 75% with the increase of chloride ion concentration in sludge system. The aerobicactivated sludge was used in this paper to carry out the biodegradation of epichlorohydrinwastewater. According to Grau experimental model, when chloride ion concentration was 2%and 12%.
     Through the study to A/O+MBBR, the parameters could be determined by experiment asfollows:the total hydraulic retention time(HRT)is 48h (anaerobic acidification unit is 24h,anoxic unit is 12h,aerobic unit is 12h), the pH in the aerobic unit should be maintained the level of 7.8-8.0. Under above conditions, the removel rate of COD was over 80%.
     The influence of immobilized method, carrier material and environmental conditions onthe treatment of epichlorohydrin wastewater was examined in the experiment of immobilizedmicroorganism treating epichlorohydrin wastewater.The results showed that polyvinyl alcoholalginateembedding method is superior to physical adsorption, the jellies ration of polyvinylalcohol:alginate was 10:1.5, the crosslinker H3BO3:CaCl2 was 6:1. When the wastewater’s pHvalue, inoculums size, activation time, temperature were 7, 20%, 16h, 30℃,respectively, thedegradation rate of immobilized microbe to the epichlorohydrin could reach 80%.
引文
[1]蔡建利.环氧氯丙烷的生产、消费和发展前景[J].中国氯碱,2008.11:6-10.
    [2]王晶.国内外环氧氯丙烷生产技术和市场发展趋势的研究[J].上海化工,2006,12(31):32-35.
    [3]薛祖源.环氧氯丙烷生产技术和发展意见[J].中国氯碱,2007,6:36-40.
    [4]徐伟箭,陈康庄.浅议环氧氯丙烷生产技术和发展意见[J].氯碱工艺,2006,9:29-33.
    [5]康维刚.高含盐污水生物处理新菌种的培养与应用研究[D].北京科技大学硕士学位论文.2005.03.
    [6]黄民生.适盐细菌生物技术处理处理高含盐量有机工业废水[J].污染防治技术,1998,11(1):30-31.
    [7]韩墨菲,杨景亮.高含盐有机废水生物处理技术现状及进展[J].河北化工,2007,30(11):59-62.
    [8]曹微寰.高含盐工业废水的生物处理[J].西南给排水,1998,(6):32-33.
    [9]崔有为,张国辉,计立平,等.海水冲厕污水生物处理可行性研究[J].工业水处理,2003,23(12):33-36.
    [10]安立超,陆路德,汪信,等.活性炭强化生物处理高含盐有机废水研究[J].南京理工大学学报(自然科学版),2003,27(6):715-719.
    [11]严学亿.耐盐微生物的培养与HB-PAC强化处理高含盐废水的研究[D].南京理工大学硕士学位论文.2002.03.
    [12]刘祥凤,李青山,乌锡康.驯化活性污泥处理高含盐量有机废水的研究[J].工业用水与废水,2002,33(4):43-45.
    [13]王基成,王建娜,潘咸峰,等.驯化耐盐活性污泥处理高盐度工业废水[J].中国给水排水,2007,23(19):83-86.
    [14]何健,李顺鹏,崔中利,等.含盐工业废水生化处理耐盐污泥驯化极其机制[J].中国环境科学,2002,22(6):546-550.
    [15]刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,13(11):54-56.
    [16]夏世斌.高含盐石化废水生化处理的研究进展[J].中国水运(学术版),2006,06(07):93-94.
    [17]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理.2002,11(3):1-4.
    [18]任雁静,张明友.深井曝气法处理环氧丙烷皂化废水[J].上海环境科学.1998,17(5):32-34.
    [19]王建娜,潘咸峰,邓建利,等.氯碱含盐废水处理中试研究[J].齐鲁石油化工.2007,35(3):169-171.
    [20] Dalmacija B.Purification of high-salinity wastewater by activated sludge process[J].Wat.Res.,1996,30(2):295-298.
    [21] Yucel Tokuz R. The effect of inorganic salts on the activated sludge processperformance[J].Wat. Res.,1989,23(5):99-104.
    [22]阮文权.废水生物处理工程设计实例详解[M].北京:化学工业出版社,2006:21-23.
    [23]吴为中,王占生.不同生物接触氧化法的净化效果及其生物膜特性的比较[J].环境科学学报(增刊),2000,20(9):44-50.
    [24]张柯,陶冠红,陈建军,等.曝气生物滤池处理高含盐乙烯废碱液的试验研究[J].石油化工安全环保技术,2009,25(1):50-51.
    [25]张明生,齐永红,段宝民.生物接触氧化工艺处理高含盐废水的研究[J].应用化工,2008,37(11):1342-1344.
    [26]尤作亮,蒋展鹏等.海水直接利用及其环境问题分析[J].给水排水,1998,24 (3):64-67.
    [27]王凯军,宋英豪.SBR的发展类型及其应用特性[J].中国给水排水,2002,18(7):23-26.
    [28]杨云龙,程启斌.SBR工艺的现状与发展[J].工业用水与废水,2002,23(2):1-3.
    [29]方先金.SBR工艺特性及降解过程研究[J].给水排水,2000,26(7):18-21.
    [30]程晓如,魏娜.SBR工艺研究进展[J].工业水处理,2005,25(5):10-13.
    [31]张勇,于德爽,王洪娟.SBR工艺处理高盐度生活污水试验[J].环境工程,2008,26(1):27-29.
    [32]王淑莹,崔有为,于德爽.无机盐对活性污泥沉降性的影响[J].环境工程,2003,21(5):7-9.
    [33]孙晓杰,周利,彭永臻.SBR中海水对短程硝化的影响[J].青岛理工大学学报,2005,26(6):111-113.
    [34] Charles Glass.Denitrification of high-nitrate,high-salinity wastewater[J].Wat.Res.,1999,33(1):223-229.
    [35]曾萍.高浓度有机废水膜生物工艺的研究[D].硕士论文.同济大学.2001.
    [36]柏云杉,柏文彦.好氧管式膜生物反应器处理高含盐有机废水的研究[J].化工时刊,2003,17(12):23-25.
    [37]农少梅,李捍东,张树增,等.高盐废水处理技术研究新进展[J].江苏环境科技,2008,21(3):72-76.
    [38]孟庆凡.高含盐环氧丙烷废水生化处理的研究[J].工业用水与废水.2000,31(1):18-21.
    [39]左红影,甘文杰,程汉林.氧化混凝-生物铁法-二段生物接触氧化法处理环氧树脂废水的研究[J].广州化工,2004,32(3):20-24.
    [40]刘洁玲.A-B二段法处理高含盐量皂化废水的研究[J].工业用水和废水,1999,11(30):19-22.
    [41]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):1-3.
    [42]王新,李培军,巩宗强.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122.
    [43]胡庆昊,朱亮,朱智清.固定化细胞技术应用于废水处理的研究进展[J].环境污染与防治,2003,25(1):35-38.
    [44]曹亚莉,田沈,赵军.固定化微生物细胞技术在废水处理中的应用[J].微生物学通报,2003,30(3):77-81.
    [45]渠文霞,岳宣峰.细胞固定化技术及其研究进展[J].陕西农业科学,2007,(6):121-123.
    [46]何延青,刘俊良,杨平.微生物固定化技术与载体结构的研究[J].环境科学,2004,25(增刊):101-104.
    [47]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000,22(5):95-101.
    [48]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [49] Durham DR,Marshall LC,Miller JG,et al.Characterization of inorganic biocarriers thatmoderate system upsets during fixed-film biotreatment processes[J].Applied andEnvironmental Microbiology,1994,60:3329-3335.
    [50] Durham DR,Marshall LC,Miller JG,et al.New composite biocarriers engineered tocontain adsorptive and ion-exchange properties improve immobilized-cell bioreactorprocess dependability[J].Applied and Environmental Microbiology,1994,60:4178-4181.
    [51]司友斌,彭军.固定化微生物技术及其在污染土壤修复中的应用[J].土壤(Soils),2007,39(5):673-676.
    [52]马梅荣,陈雷.宣世伟.XM固态菌剂载体选择的初步研究[J].哈尔滨工业大学学报,2005,37(2):259-261.
    [53]周华,姜岷.固定化细胞成型机械的研究综述[J].工业微生物,1998,28(3):43-46.
    [54]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J].工业微生物,1998,28(2),35-39.
    [55]谷妮娜.固定化微生物技术处理含有废水的研究[D].硕士论文.沈阳:东北大学,2005.
    [56]秦力.固定化微球制备技术及相关性能研究[D].硕士论文.重庆:重庆大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700