用户名: 密码: 验证码:
甘蓝型油菜A8连锁群种子含油量QTL簇解析及连锁累赘分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国作为植物油消费大国,每年进口依存度达61%。而油菜作为我国食用植物油的主要来源,提高其产油量将对保障我国食用油供给安全以及提高我国食用油的供给水平具有重大的作用。同时,油菜因其种子内油酸含量高、亚麻酸含量低而受人们的普遍欢迎。然而油菜“低芥酸”化过程中低芥酸基因的来源是农艺性状上较差的饲料品种,在导入“低芥酸”基因的同时也导入了一些与其紧密连锁的不利于种子油份累积的基因。因此,深入了解甘蓝型油菜种子含油量累积的遗传机制以及打破种子低芥酸含量与低含油量间连锁累赘将对我们培育高含油量新品种具有重要的理论指导意义。
     本研究中所利用的TN DH群体A8连锁群上能够分别在12个、10个环境下检测到种子含油量QTL和种子芥酸含量QTL,且置信区间重叠。为深入解析A8连锁群上种子含油量QTL簇、明确该连锁群上种子芥酸含量与含油量间关系以及避免该连锁群上种子芥酸含量与含油量间连锁累赘,我们利用比较基因组学的方法在该区间内加密了基于白菜BAC的SSR分子标记并建构了以宁油7号为轮回亲本的近等基因系。主要研究结果如下:
     通过比较基因组学手段获得了49个甘蓝型油菜A8连锁群对应的已测序白菜BAC,利用这些BAC开发并定位了14个分子标记于A8连锁群种子含油量QTL置信区间。
     利用加密后的A8遗传连锁图重新检测了种子含油量以及芥酸含量QTL。检测结果表明这一种子含油量QTL簇内QTL数目、位置以及效应大小都有所变化。这一种子含油量QTL簇内QTL经整合后成7个同义QTL
     筛选BC4F4后获得了4个同义种子含油量QTL对应的近等基因系材料,同时对其表型效应进行了初步分析。
     种植了8L097-8以及8L099-2两个分离群体用于分析A8连锁群上种子芥酸含量与含油量间关系。
     综上,通过比较基因组学来利用已测序物种序列信息是加密QTL区间分子标记的有效方法。该区间内所加密分子标记不仅有利于近等基因系筛选,也是将来育种过程中用于打破种子芥酸含量与含油量间连锁累赘的有力工具。所构建的近等基因系材料被成功地用来分解A8连锁群上种子含油量QTL簇以及明确该连锁群上种子芥酸含量与含油量的关系。
As a super consumer of plant oil, our country's level of dependency on import comes to 61%. Seed oil increment of Brassica napus, one of the most important sources of plant oil, will not only secure, but also improve its supply. At the same time, rapeseed oil earns popularity with its character of high oleic acid content and low linolenic acid content. However, primarily from forage rapeseed, genes which are negative to seed oil accumulation together with their tightly linked "lower erucic aicd" gene, were transferred into elite cultivars during the process of "lower erucic acid". Therefore, detailed understanding of genetic mechanism of seed oil accumulation of rapeseed and breaking linkage drag between seed oil content and eruci acid content will theoretically serve as guidelines for breeding higher seed oil content cultivars.
     We detected seed oil content and erucic acid content QTLs in A8 of TN DH mapping population in 12 and 10 environments, respectively. Evenmore, their confidence intervals overlap. In order to separate this QTL cluster, break linkage drag between seed oil content and erucic acid content and quantify their relationship in A8 linkage group, we have densified this region with BAC-based SSR markers through comparative genomics and constructed NILs through consecutive backcrossing by Ningyou7. Results stated as below:
     14 BAC-based SSR markers, developed from 49 sequenced BAC of Brassica rapa, were mapped in this QTL region through comparative genomics.
     Result of redetecting seed oil and erucic acid content QTL of A8 linkage group demonstrated that number, location, and effect of QTLs differed significantly from those before. Seed oil cotent QTLs of this region were integrated into 7 consensus QTLs after meta-analysis.
     NILs corresponding to 4 consensus seed oil content QTLs were selected from BC4F4, and their genotypic effects were analyzed as well.
     Two segregating populations,8L097-8 and 8L099-2, were planted to analyze the relationship between seed oil content and erucic acid content in linkage group A8.
     In sum, utilization of sequenced DNA information through comparative genomics is an efficient way to densifying QTL region with molecular markers. These markers will not only be helpful in selecting NILs, but also serve as important tools for breaking linkage drag between seed oil content and erucic acid content in A8 during future rapeseed breeding programs. Selected NILs have been successfully used to separate seed oil content QTL cluster and quantify the relationship between seed oil content and eruci acid content in A8.
引文
1. 陈洁.东乡野生稻抗稻飞虱QTL定位及其连锁累赘分析.[硕士学位论文]合肥:安徽农业大学图书馆,2005
    2. 杜景红,樊叶杨,吴季荣,庄云杰.水稻第6染色体短臂产量性状QTL的分解.中国农业科学,2008,4:939-945
    3. 付三雄,戚存扣.甘蓝型油菜含油量的主基因+多基因遗传分析.江苏农业学报,2009,25:731-736
    4. 傅廷栋,杨光圣,涂金星,马朝芝.中国油菜生产的现状与展望.中国油脂,2003,28:11-13
    5. 傅廷栋.油菜的品种改良.作物研究,2007,3:159-164
    6. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002,57-75
    7. 甘功勋,林树春.油菜含油量研究及高油分育种.种子,1997,1:31-33
    8. 韩继祥.甘蓝型油菜含油量的遗传研究.中国油料作物学报,1990,2:1-6
    9. 刘文强,樊叶杨,陈洁,施勇峰,吴建利.通过生育期基因型选择避免稻瘟病抗性与结实率的遗传累赘.中国水稻科学,2008,4:359-364
    10.龙艳.甘蓝型油菜开花期QTL定位及分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    11.马占强,林良斌.分子标记技术在油菜育种中的应用.分子植物育种,2004,5:728-732
    12.梅德圣,张壵,李云昌,胡琼,李英德,徐育松.油菜油份、蛋白质和硫苷含量相关性分析及QTL定位.植物学报,2009,44:536-545
    13.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    14.师家勤.甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析.[博士学位论文].武汉:华中农业大学图书馆,2008
    15.田芳.甘蓝型油菜A8连锁群含油量QTLs及其遗传累赘分析.[硕士学位论文].武汉:华中农业大学图书馆,2009
    16.王贵春,杨光圣.油菜高含油量育种研究进展.安徽农业科学,2007,35:5373-5375
    17.王汉中.我国食用油供给安全形势分析及对策建议.中国油料作物学报,2007,29:347-349
    18.伍宝朵.甘蓝型油菜C6染色体上控制开花和抽薹性状QTL簇的初步解析.[硕士学位论文].武汉:华中农业大学图书馆,2009
    19.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜含油量的遗传与QTL定位.作物学报,2007,33:1495-1501
    20.张宁.用分子标记技术初步解析甘蓝型油菜种子含油量QTL簇qcO.C2,[硕士学位论文].武汉:华中农业大学图书馆,2009
    21.张征锋,肖本泽.基于生物信息学与生物技术开发植物分子标记的研究进展.分子植物育种,2009,1:130-136
    22. Asghari A, Fathi A A, Mohammadi S A, Mohammaddust H. QTL Analysis for Diamondback Moth Resistance in canola (Brassica napus L.). International Journal of Plant Production,2009, 3:ISSN 1735-6814
    23. Asghari A, Mohammadi S A, Moghaddam M, Mohammaddoost H R. QTL analysis for cold resistance-related traits in Brassica napus using RAPD markers. Journal of Food Agriculture & Environment,2007,5:188-192
    24. Asghari A, Mohammadi S A, Moghaddam M, Toorchi M, Mohammadinasab A D. Analysis of quantitative trait loci associated with freezing tolerance in rapeseed (Brassica napus L.). Biotechnology & Biotechnological Equipment,2008,22:548-552
    25. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Molecular Genetics and Genomics,2003,268:656-665
    26. Bandaranayake C K, Koumproglou R, Wang X Y, Wilkes T, Kearsey M J. QTL analysis of morphological and developmental traits in the Ler x Cvi population of Arabidopsis thaliana-QTL analysis in Arabidopsis. Euphytica,2004,137:361-371
    27. Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics,2010,120:271-281
    28. Brown J K M. Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 2002,5:339-344
    29. Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus:(ⅰ) Seed oil content and fatty acid composition. Heredity,2003,90:39-48
    30. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics,1999,153(2): 949-964
    31. Darvasi A, Weinreb A, Minke V, Weller J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated map. Genetics,1993,134: 943-951
    32. Dehesh K, Jones A, Knutzon D S, Voelker T A. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J,1996,9:167-72
    33. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J E, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics,2006,113:1331-1345
    34. Devos K M, Gale M D. Comparative genetics in the grasses. Plant Molecular Biology,1997,35: 3-15
    35. Devos K M, Gale M D. Genome relationships:The grass model in current research. Plant Cell, 2000,12:637-646
    36. Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (Brassica napus L.). Ⅱ. Localization of genes controlling erucic acid synthesis and seed oil content. Theoretical and Applied Genetics,1995,91:6
    37. Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome,2007,50:840-854
    38. Hu X Y, Sullivan-Gilbert M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics,2006,113:497-507
    39. Kaur S, Cogan N O I, Ye G, Baillie R C, Hand M L, Ling A E, McGearey A K, Kaur J, Hopkins C J, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith K F, Forster J W, Spangenberg G C. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theoretical and Applied Genetics,2009,120:71-83
    40. Kim H, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Van Nguyen D, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:267-271
    41. Knutzon D S, Thompson G A, Radke S E, Johnson W B, Knauf V C, Kridl J C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci U S A,1992,89:2624-2628
    42. Lassner M W, Levering C K, Davies H M, Knutzon D S. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol,1995,109:1389-1394
    43. Legg P D. Effects of the Nicotiana debneyi black root rot resistence factor on agronomic and chemical traits in burley tabocco. Theoretical and Applied Genetics,1981,60:365-368
    44. Lewis R S, Linger L R, Wolff M F, Wernsman E A. The negative influence of N-mediated TMV resistance on yield in tobacco:linkage drag versus pleiotropy. Theoretical and Applied Genetics, 2007,115:169-178
    45. Li Y Y, Shen J X, Wang T H, Chen Q F, Zhang X G, Fu T D, Meng J L, Tu J X, Ma C Z. QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Australian Journal of Agricultural Research,2007,58:759-766
    46. Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTL mapping of seed coat color for yellow seeded Brassica napus. Acta Genetica Sinica,2006,33:181-187
    47. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim Y P, Meng J. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,2007,177:2433-2444
    48. Ma A F, Wang W, Li J N, Chen L, Wang J F, Liu L Z. QTL for seed germination rate and related physiological traits of Brassica napus L. Yichuan,2009,31:206-212
    49. Manzanares-Dauleux M J, Delourme R, Baron F, Thomas G. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theoretical and Applied Genetics, 2000,101:885-891
    50. Marwede V, Gul M K, Becker H C, Ecke W. Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breeding,2005,124:20-26
    51. Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in Brassica napus. Plant Breeding,2009,128:458-465
    52. Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics, 2004,108:280-291
    53. Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut J M. Drought stress and tropical maize:QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics,2009,119:913-930
    54. Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution-Grasses, line up and form a circle. Current Biology,1995,5:737-739
    55. O'Neill C M, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant Journal,2000,23:233-243
    56. Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171(2):765-781
    57. Pasyukova E G, Vieira C, Mackay T F C. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics,2000,156(3):1129-1146
    58. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics,2006,114:67-80
    59. Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 2005,110:865-880
    60. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.):1. Identification of genomic regions from winter germplasm. Theoretical and Applied Genetics,2006,113:549-561
    61. Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008,179: 1547-1558
    62. Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends in Plant Science,2006,11:535-542
    63. Sharpe A G, Lydiate D J. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome,2003,46:461-468
    64. Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C, Bancroft I, Zhao J Y, Meng J L. Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics,2009,182:851-861
    65. Stoll C, Luhs W, Zarhloul M K, Brummel M, Spener F, Friedt W. Knockout of KASⅢ regulation changes fatty acid composition in canola(Brassica napus). European Journal of Lipid Science and Technology,2006,108:277-286
    66. Tang J, Scarth R. Effect of genetic background on the target fatty acids of acyl-ACP thioesterase transgenes in Brassica napus. Plant Breeding,2004,123:254-261
    67. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal,2007,5:431-441
    68. Voelker T A, Worrell A C, Anderson L, Bleibaum J, Fan C, Hawkins D J, Radke S E, Davies H M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science, 1992,257:72-74
    69. Wang L Q, Liu W J, Xu Y, He Y Q, Luo L J, Xing Y Z, Xu C G, Zhang Q F. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theoretical and Applied Genetics,2007,115:463-476
    70. Wang L Q, Zhong M, Li X H, Yuan D J, Xu Y B, Liu H F, He Y Q, Luo L J, Zhang Q F. The QTL controlling amino acid content in grains of rice (Oryza sativa) are co-localized with the regions involved in the amino acid metabolism pathway. Molecular Breeding,2008,21:127-137
    71. Wang X F, Liu G H, Yang Q, Hua W, Liu J, Wang H Z. Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica,2009,173:17-24
    72. Xu F S, Wang Y H, Meng J. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding,2001,120:319-324
    73. Yan X Y, Li J N, Fu F Y, Jin M Y, Chen L, Liu L Z. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 2009,170:355-364
    74. Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park J Y, Lim M H, Kim H I, Lim Y P, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Parka B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    75. Young N D, Tanksley S D. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theoretical and Applied Genetics,1989,77: 353-359
    76. Zeven A C, Knott D R, Johnson R. Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica 1983, 32:319-327
    77. Zhang S F, Mao C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genetica Sinica,2006, 33:171-180
    78. Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Oil content in a European x Chinese rapeseed population:QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science,2005,45:51-59
    79. Zhuang J Y, Fan Y Y, Rao Z M,Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics,2002,105:1137-1145
    80. Zou J T, Katavic V, Giblin E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell,1997,9:909-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700