用户名: 密码: 验证码:
犍为县生姜连作土壤微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从四川省犍为县榨鼓乡采集了生姜连作土壤,包括患病生姜根际土壤和非根际土壤,正常生姜根际土壤和非根际土壤,采用稀释平板法测定了土壤微生物类群的数量,分别测定了土壤过氧化氢酶、脲酶、中性磷酸酶和微生物量C、N。采用稀释平板法分离获得38株细菌,应用16S rDNA PCR-RFLP、16S rRNA基因全序列分析,研究了这些细菌的遗传多样性,确定了其系统发育及分类地位;采用PCR-DGGE研究了土壤微生物的遗传多样性。其结果如下:
     1.患病生姜根际土壤细菌明显增多,放线菌和真菌显著下降,而患病生姜的非根际土壤放线菌有明显增加,真菌和细菌变化不明显。
     2.患病生姜根际土壤的中性磷酸酶,脲酶活性降低,过氧化氢酶增加,表明根系分泌物对脲酶、中性磷酸酶活性具有抑制作用,而对过氧化氢酶活性有促进作用。
     3.16S rDNA PCR-RFLP分析结果表明,在75%相似性水平处,38株细菌分为6个遗传群。供试菌株表现出一定的差异性,呈现出丰富的多样性。
     4.在上述实验基础上,选取了SJ1-4、SJ1-5、SJ1-6、SJ1-9、SJ1-1O、SJ1-11、SJ2-1、SJ2-4、SJ2-8、SJ3-5、SJ4-2、SJ4-3、SJ4-5共13株代表菌株测定了16S rDNA序列,进而构建了系统发育树关系。结果表明,13个代表菌株分布于6个系统发育分支,分别为假单胞菌属(Pseudomonas)、不动杆菌属(Acinetobacter)、芽孢杆菌属(Bacillus)、肠杆菌属(Enterobacter)、鞘氨醇杆菌属(Sphingobacterium)、溶杆菌属(Lysobacter)。
     5.对土壤DNA的PCR-DGGE分析结果表明,患病生姜根际土壤和正常生姜根际土壤细菌聚类在一起,且细菌种群相似性较高,达到70%左右,显示它们之间具有比较相似的种群结构。
     在真菌种群聚类中,患病生姜根际土壤与正常生姜根际土壤聚在一起,患病生姜非根际土壤和正常生姜非根际土壤聚类在一起,各自的相似性不高,说明生姜连作导致了土壤真菌种类改变。
In this study, we collected four kinds of ginger continuous cropping soil sample, including sick ginger rhizosphere soil (SGRS) and sick ginger non-rhizospheric soil (SGNRS), normal ginger rhizospheric soil (NGRS) and normal ginger non-rhizophere soil(NGNRS) from Zhagu town in Qianwei county, Sichuan Province, and determined the microbial flora quantity by pour plate method, and then measeured the soil catalase activity, urease activity, neutral phosphatase activity, and soil microbial biomass C, N. By using pour plated method, 38 bacterial strains were isolated, and 16S rDNA PCR-RFLP,16S rRNA gene sequence analysis was used to do their genetic diversity and phylogeny. Finally, PCR-DGGE was performed to reveal the soil microbial diversity. The results were as follows:
     1. The quantity of soil bacteria in SGR increased, but the number of actinomycetes and fungi decreased significantly; however, the quantity of actinomyces in SGNR increased markedly, the fungus and bacteria number did not change obviously.
     2. In SGRS, the soil neutral phosphatase activity and urease activity decreased, but catalase activity increased, which suggested that, the plant root exudates inhibited urease activity, neutral phosphatase activity, whereas catalase was then promoted because of continuous cropping.
     3. Analysis of 16S rDNA PCR-RFLP revealed that, at the level of 75% similarity,38 bacteria were divided into 6 genetic groups. The results also showed that the difference and diversity was existed among these strains.
     4. Based on the results above,13 representative bacterial strains were selected to do 16S rDNA sequence analysis, and the phylogenetic tree was constructed. The results showed that 13 representative strains distributed into six phylogenic branches, including genus Pseudomonas, Acinetobacter, Bacillus, Enterobacter, Sphingobacterium and Lysobacter.
     5. The results of soil fungus PCR-DGGE analysis suggested that, though the fungus flora between SGNRS and NGNRS was closer than that in SGRS and NGRS, the similarity was not high, which revealed that ginger continuous cropping led to the variation of soil microbial population.
引文
[1]曹承绵,李荣华.红壤的酶活性与土壤肥力[J].土壤通报,1986,17(7):233-235
    [2]陈恩风,周礼恺.土壤肥力实质研究[J].土壤学报,1985.22(2):113-119
    [3]陈慧,郝慧荣.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(12):2-23
    [4]宫曼丽,邢德峰.DGGE-TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2005.794:174-177
    [5]郭永霞,李彩华.农业措施对大豆根际土壤微生物区系的影响[J].土壤肥料科学,2006.9(2):55-62
    [6]韩丽梅,杨振明.两种基因型大豆根分泌物对大豆根腐病菌的化感作用[J].应用生态学报,2005,16(1):137-141
    [7]贺丽娜,高静.连作对设施黄瓜产量和品质及土壤酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(5):22-27
    [8]何礼远,康耀卫.植物青枯菌致病机理[J].自然科学进展-国家重点实验室通讯,1995,5(1):7-14
    [9]和文祥,朱铭莪.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):375-377
    [10]胡江春,王书锦.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966
    [11]黄锦法,马树国.浙江嘉兴保护地土壤障碍的农化性状指标研究[J].土壤通报,2001,32(4):160-162.
    [12]驹田旦.持续性农业和土壤病害管理[J].系统农业,1994,10(2):18-22
    [13]李春格,李晓鸣,王敬国,等.大豆连作对土体和根际微生物群落功能的影响[J].生态学报,2006,(4):544-547
    [14]李潞滨,刘振静.应用DGGE技术分析青藏铁路沿线的土壤细菌种群多样性[J].生态学杂志,2008,27(5):751-755
    [15]李世清,李生秀.土壤微生物体氮测定方法的研究[J].植物营养与肥料学报,2000,6(1):75-83
    [16]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-68
    [17]刘泽,李强生.油菜黑胫病原真菌的分离与鉴定[C].中国植物病理学会2008年学术年会论文集.
    [18]吕卫光,沈其荣.酚酸化合物对土壤酶活性和土壤养分的影响[J].植物营养与肥料学报,2006,12(6):845-849
    [19]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1571-1575
    [20]马云华,秀峰.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用态学报,2005,16(11):377-379
    [21]邱莉萍,王益权,等.土壤酶活性与土壤肥力关系分析[J].植物营养与肥料学报,2004,(3):135-142
    [22]任欣正,方中达.姜瘟病病原菌的鉴定[J].植物病理学报,1981,11(1):151-56
    [23]申卫收,林先贵.不同栽培条件下蔬菜塑料大棚土壤尖孢镰刀菌数量的变化[J].土壤学报,2008,1(1):71-73
    [24]孙波,赵其国,张桃林.土壤质量与持续环境-土壤质量评价的生物学指标[J].土壤,1997,(5):225-234
    [25]孙秀山.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27(5):617-621
    [26]汪立刚,孙克刚.大豆连作障碍及调控技术研究进展[J].土壤肥料,2001(5):113-115
    [27]王光华,刘俊杰.PCR—DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报,2008,28(1):19-27
    [28]王金生.植物病原细菌学[M].北京:中国农业出版社,2000:456-458
    [29]王树起,韩晓增.长期施肥对东北黑土酶活性的影响[J].应用生态学报,2008.19(3):87-91
    [30]王啸波,唐玉秋.环境样品中DNA的分离纯化和文库构建[J].微生物学报,2001.16(4):53-56
    [31]吴凤芝,赵风艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学,2002,35(7):821-825.
    [32]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物报,2006,46(2):134-42
    [33]徐强,程智慧.玉米线辣椒套作对线辣椒根际、非根际土壤微生物、酶活性和土壤养分的影响[J].干旱地区农业研究,2007.25(5):117-126
    [34]邢勇,殷晓燕.植物的自毒作用[M].生物学教学,2002,27(11):6-7
    [35]杨海君,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21-26
    [36]杨霞.若尔盖高原湿地生物多样性现状及其保护对策[J].长春大学学报,2002,12(3):421-424
    [37]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570
    [38]姚革,彭化贤.四川省细菌性青枯病病原菌菌系及分布研究[J].西南农业大学报,1990,12(5):536-539
    [39]殷峻,刘和.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,25(6):11-15
    [40]于贵瑞,陆欣来,韩静淑,等.大豆、向日葵等作物连作障碍与轮作效应机理研究初探[J].生态学杂志,1988,7(2):1-8
    [41]袁玲,杨邦俊.长期施肥对土壤酶活性和氮磷养分的影响[J].植物营养与肥料学报,1997,3(4):33-42
    [42]赵其国,张桃林.土壤质量与持续环境—土壤质量的定义及评价方法[J].土壤,1997
    [43]赵之重.土壤酶与土壤肥力关系的研究[J].青海大学学报(自然科学版),1998,16(3):82-84
    [44]张凤丽,何雨.嫁接茄子根系分泌物的化感效应[J].应用生态学报,2005,14(3):85-89
    [45]张晓玲,潘振刚.自毒作用与连作障碍[J].土壤通报,2007,4(8):113-115
    [46]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [47]邹莉,李玲.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005.25(2):33-41
    [48]朱艳,曹卫星.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学,2003,36(9):123-126
    [49]Kennydy AC, Smith KL. Soil microbial diversity and the sustainability of a cultural soils [J]. Plant and Soil,1995,170:75-86
    [50]Bai FY, Takashima M, and NakaseT. Phylogenetic analysis of strains originally assigned to Bullera variabilis:descriptions of Bullera pseudohuiaensis sp. nov, Bullera komagatae sp. nov. and Bullera pseudochimicola sp. nov. [J]. Int. J. Syst. Evol. Microbiol.2001,51:2177-2187
    [51]Brodie E, Edwards S, Clipson N. Bacterial community Dynamics across a Floristic Gradient in a Temperate upland-Grassland Ecosystem[J]. Microb. Ecol.,2002,44:260-270.
    [52]Carysc, giovannonisj. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting Deep-sea hydrothermalvents and cold seeps [J]. PNAS,1993,90:5695-5699
    [53]Chiarini L, Bevivino A, Dalmast ri C,et al. Influence of plant development, cultivar and soil type on microbial colonization of maize root [J]. Appl. Soil Ecol.1998, (8):11-18.
    [54]Debosz K, asmussen PH, edersen AR. Emporal variations in microbial biomass cand cellulolytic enzyme activity in arable soils effects of organic matter input[J]. Applied Soil Ecology,1993, (3): 209-218
    [55]Diamantidis G, Effosse A, Potier P, et al. Purification and characterization of the first bacteriallac case in the rhizospheric bacterium Azospirillum lipoferum [J]. Soil Biology and Biochemistry,2000, (32):919-927
    [56]Ellis RJ, Morgan P, Weightman AJ, et al. Cultivation-dependent and independent approaches for determining bacterial diversity in heavy-metal contaminated soil [J]. Applied and Environmental Microbiology,2003,69:3223-3230
    [57]Fell J W, Boekhout T, Fonseca, A, et al. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol[J]. Microbiol. 2000,50:1351-1371.
    [58]Fitta B D L, Hub B C, Lic Z Q, et al. Strategies to prevent spread of Leptosphaeria maculans f phoma stem canker onto oil-seed rape crops in China:costs and benefits[J]. Plant pathology,2008, (57):652-664
    [59]Fisher SG, Lerman LS. DNA fragment differing by single base-pair substitutions are separated in denaturing gradient gels:Correspondence with melting theory [J]. Proceeding of the National Academy of Sciences of the USA,1983, (80):127-141
    [60]Friebe A, Roth U, Kiiek P, et al. Effects of DIBOA on the activity of plasma memberan phytochemistry[J],1997,44(1):979-983.
    [61]Gerard M, Ellen C, Waal D, et al. Profiling of complex microbial populations by denaturing Gradient gel electrophoresis analysis of polymera chain reaction-amplifiedgenes coding for 16S rDNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700
    [62]Grayston SJ, Wang S, Camp bell CD, et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biol,1998,30:369-378.
    [63]Hedley M.J, Stewart J.W.B, Chauhan B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations [J]. Soil Sei. Soe. Am. J, 1982,46:970-976
    [64]Henckel Jckel U, Schnell S, Conrad R. Molecular analyses of novel Methanotrophic communities in forest soil that oxidize atmospheric methane[J]. Applied and Environmental Microbiology,2000,21: 1801-1808
    [65]James J B, Sherman T D, DevereuX R. Analysis of bacterial communities in seagrass bed sediments by double-gradientdenaturing gradient gel electrophoresis of PCR-amplified 16S rRNA Genes[J]. Microbial Ecology,2006,52(4):655-661
    [66]Kim YP, Lee EB, Kim SY, et al. Inhibition of prostag land in E2 production by platycodin Disolated from the root of platycodongr and iflorum[J]. Planta Med,2001,67(4):355-357
    [67]Lee JH, Choi YH, Kang HS, et al. An aqueous extract of platycodiradix inhibits LPS-induced NF-kappa Bclar translocation inhuman cultured airway epithelial cells[J]. Int. J. Mol. Med.,2004, 13(6):8431-8434
    [68]Halda-Alija L, Hendricks SP. Spatial and Temporal Variation of Enterobacter Genotypes in sediments and the Underlying Hyporheic Zone of an Agricultural [J]. Stream Microb Eeol 2001,42: 286-294.
    [69]Li XZ. Enzyme activities along a climatic transect in the Judean Desert[J]. Catena,2003,53(4): 49-63.
    [70]Louise MD, Gwyn SG, Join H, et al. Mangement influences no soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales[J]. Soil Bioehem,2000, 32:567-569
    [71]Mccaig A E, Grayston S J, Prosser J I. Impact of cultivationorl charaeterisation of species composition of soil bacterial communities[J]. FEMS Microbiology Ecology,2001,35(1):37-48
    [72]Muyzer G, De Waal EC, UitterlindenAG. Profiling of complex microbial population by denaturing gradientgele ectrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700
    [73]Naseby DC, Pascual JA, Lynch JM. Effect of biocontrel strains of Triehoderma on plant growth, Pythiumu ltimum populations, soil microbial communities and soil enzyme activities[J]. Journal of Applied Microbiology,2000,88:161-169
    [74]Norris TB, Wraith JM, Castenholz Rw. Soil microbial community structure across a thermal gradient following a geothermal heating event. Applied an Environmental Microbiology [J].2002,68: 6300-6309
    [75]Oger. Effects of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines[J]. Molecular Ecology,2003,56:689-691
    [76]Petrir, Imhoff J F. Genetic analysis of sea-ice bacterial communities of the western Baltic sea using an improved double radient method[J]. Polar Biology,2001,24(4):252-257.
    [77]Preston GM. Plant perceptions of plant growth-promoting pseudomonas Philosophic [J]. London Seri. B-Biol. Sci.2004,359(146):907-918
    [78]Ramette A, Frapolli M, Defago G Moenne. Phylogeny of HCN synthase-encodinghcn BC genes in biocontrol fluorescent pseudomonas and its relationship with host plant species and HCN synthesis ability[J]. Molecul. Plant-Micro. Interact.2003,16(6):525-535
    [79]Riceel. Some possible roles of inhibitors in old-field succession[M]. Wsahington D C. Biochemical Interactions Among Plants. National Academy of Sciences, U S A,1971
    [80]Roose-Amsaleg C L, Garnier-Sillam E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples[J]. Applied Soil Ecology,2001,18:47-60
    [81]Sasser J N, Uzzell J G. Control of the soybean cyst nematode by crop rotationin combination with a nematicide [J]. Nematol,1991,23(3):344-347
    [82]Sekiguchi H, Tomioka N, Najagarat. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J]. Biotechnology Letters,2001,23(15): 1205-1208.
    [83]Shin CY, Lee WJ, Lee EB, et al. latycodin D and D3 increase airway mucin release in vivo and invitro in rats and hamsters[J]. Planta Med,2002,68(3):2111.
    [84]Singhhp, Drbatishi, Rkkohli. Autotoxity:eoncept, organisms, and Ecological significande[J]. Crit. Rev. Plant Sci,1999,18:757-772
    [85 Taylor JP, Wilson B, M11S MS. Comparison of microbial numbers and enzymatic activities in surfacesoils and subsoils using various techniques[J]. Soil Biolo. and Biochem.,2002,34:387-401
    [86]Tefan W, W Arnold. Dversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-Amplified 16SrRNA genes [J]. Applied and Environment Microbiology,1996,62(3):7667-7671
    [87]Waggev M G, Denton H P.赵炳良译.连续耕作和轮作对作物产量、残茬覆盖及土壤水分的影响[J].国外农学,1992:1233-1237
    [88]Warembourg F R, Billes G. Estimating carbon transfers in the plant rhizosphere[A]. In:Harley J L, Russell R S the Soil. Root Interface[C]. London:Academic Press,1979:183-194
    [89]Watanabe K, Kodama Y, Harayama S. Design and evalution of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting[J]. Microbiol. Methods,2001,44: 253-262.
    [90]Willum, Antoond, WillemI M, et al. Searching for predominant soil bacteria:16S rDNA cloning versus strain cultivation[J]. FEMS Microbiology Ecology,1999,30:137-145
    [91]Heuer H, artung K, ieland G, et al. polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolate scorresponding to bands of community fingerprints [J]. Applied and Environmental Microbiology,1999,65(3):1045-1049
    [92]Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gelelectmphoretic separation in denaturing gradients[J]. Applied and Environmental Microbiology,1997,63(8):3233-3241.
    [93]Harrison S P, Mytton L R, Skot L, et al. Characterization of Rhizobium isolates by amplification of DNA polymorphism using random primers [J]. Microbiol.,1992,38:1009-1015
    [94]Ross & D.J. Measurement of microbial biomass C and N in grassland soils by fumigation-incubationprocedures:Influence of inoculum size and control[J]. Soil Boil. Biochem., 1990,22:289-294.
    [95]Leckie S E, Prescottse, Gray S J, et al. Characterization of humus microbial in adjacent forest types that differ in nitrogen availability [J]. Microbiol. Ecol.,2004,48(1):29-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700