用户名: 密码: 验证码:
县域农田土壤重金属空间变异特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用地统计学与GIS相结合的方法,研究了四川省双流县农田土壤铜、锌、铬、铅含量的空间变异特征及其影响因子,并对其采样数量、污染状况、风险评估及超标可能性预测等方面进行了深入分析,取得了以下主要结论:
     (1)研究区内铜、锌、铅含量受到外源因素深刻影响,积累非常明显,值域分布范围较为广泛。铜、锌、铬均具有中等空间相关性,其空间变异受到结构性因子和随机性因子共同影响;而铅含量空间相关性很弱,其空间变异主要受随机性因子影响。各向异性下,四种重金属含量空间相关性均有一定程度提高。土壤铜、锌、铬含量分布趋势较为相似,均为西北高,东南低,且分别具有极显著的正相关性。铅含量在区域内的分布趋势并不明显,不同地貌类型下均有高值区分布。交互检验表明,铜、锌、铬含量插值精度较高而铅含量降低,主要受到其空间相关性的影响。
     (2)相对于常规随机抽样方法,协同克里格法确保了样点缩减后变量的空间相关性。在相同取样数量下,协同克里格法的预测精度要高于普通克里格法。在初始样点数量缩减10%的情况下,铜、铬含量协同克里格插值的预测精度仍高于初始623个样点的普通克里格插值,且两种方法得到空间分布图具有极高的相似性。
     (3)根据《食用农产品产地环境质量评价标准》中土壤环境质量划分标准限值,样点铜、锌含量单项污染指数多处于清洁等级,而铅含量单项污染指数和综合污染指数多处于尚清洁等级。面积统计表明,区域内土壤环境污染并不严重,多处于尚清洁水平。其中,铅含量单项污染指数处于超标等级的面积比例较大。潜在生态风险评价表明,铜、锌、铅潜在生态危害较小,均处于轻微生态风险等级。三种重金属含量超过临界值的概率均较低,其中,铅含量超标概率的值域范围最为集中。铜,锌含量超标概率分布的规律性相对较强,而铅含量超标概率分布较为离散。
     (4)土壤铜、锌、铬含量在三种地貌类型和三种成土母质中的变化顺序分别表现出一致性但影响程度的差异有所不同,其中,地貌类型是影响铜含量的重要因子,而成土母质对铜和锌含量的影响较深;有机肥使用量对农田土壤铜、锌、铬含量空间变异有重要影响;农业综合条件中农业基础条件对土壤铜、锌、铬含量空间变异的影响较大,而铅含量的空间变异主要受农药使用量和运输业规模的影响;缓冲区分析表明,土壤铅含量随着与道路距离的增加表现出先增加后降低的趋势。
Geostatistics combined with GIS were used in this study for the analysis of the spatial variability and influencing factors of Copper (Cu), Zinc (Zn) and Chromium (Cr) of cropland soil in Shuangliu county Sichuan province and the sampling numbers, pollution status, risk assessment and the prediction of the exceeding possibilities were thoroughly analyzed.The conclusions were as follows:
     (1) The concentrations of Copper (Cu), Zinc (Zn) and Lead(Pb) in the study area were affected by the exogenous factors, and very obviously accumulated with wide distribution range. The concentrations of Cu, Zn and Cr in soil had moderate spatial correlation, and their spatial variability were caused by structural factors and random factors;but the concentration of Pb had weak spatial correlation,and it was mainly caused by random factors. In anisotropic conditions,the spatial correlation of these four metals had increased to a certain extent. The spatial distribution trends of concentrations of Cu, Zn and Cr in soil were quite similar,high in the northwest and low in the southeast,and it had a highly significant positive correlation.The distribution of Pb concentration was not obvious and the high-value areas distributed in different topographic conditions.The cross-validation showed the high interpolation precision of Cu, Zn and Cr concentration and low interpolation precision of Pb,which was mainly caused by the spatial correlation.
     (2) Compared with conventional random sampling method, co-kriging method ensured the spatial correlation after the samples reduction. In the same sample volumes, prediction accuracy of the co-kriging method was higher than that of ordinary kriging. Under the condition that the initial samples were reduced by 10%,the prediction accuracy of Cu and Cr of co-kriging was still higher than that of ordinary kriging interpolation of the initial 623 samples, and the spatial distribution map of the two methods was highly similar.
     (3) According to classification limits of soil environmental quality from" Farmland environmental quality evaluation standards for edible agricultural products ", the single pollution index of sample Cu and Zn mainly belonged to the clean level,while the single and multi pollution index of Pb just belonged to the clean level.The area statistics showed that the pollution in the study area was not serious, many of which were still the clean level. Among them, the area which exceeded the single pollution index of Pb concentration was comparatively large; Potential ecological risk assessment indicated that the potential ecological risk of Cu, Zn and Pb was small, and at a slightly ecological risk level. The probability that the concentration of the three kinds of heavy metals content exceeded the critical value was low;meanwhile the probability range that the Pb concentration exceeded the critical value was mostly centralized, and the probability distribution regularity that the Cu and Zn concentration exceeded the critical value was relatively excessive while that of Pb was discrete.
     (4) The variation orders of soil Cu, Zn and Cr concentration under the three kinds of geomorphologic types and parent materials demonstrated consistently, respectively, but with different impact. The geomorphologic types were an important factor affecting Cu concentration, while the parent materials had a deep impact on the Cu and Zn concentration; the application of organic fertilizer had a profound impact on the spatial variability of soil Cu, Zn and Cr; in the comprehensive agricultural conditions, the basic conditions of agriculture had a big impact on the spatial variability of soil Cu, Zn and Cr, whereas the spatial variability of Pb concentration was mainly affected by the application dosage of pesticide and the scale of transport; buffer analysis showed that when the distance from the road increased,the Pb concentration first increased, then decreased.
引文
[1]王波,王元仲,李冬梅,等.迁安市农田重金属含量空间变异性[J].应用生态学报,2006,17(8):1495-1500.
    [2]姚学良,廖远安.成都市金牛区土壤重金属污染状况-浅谈土壤生态环境治理的紧迫性问题[J].四川地质学报,2002,22(3):158-160.
    [3]刘红樱,谢志仁,陈德友,等.成都地区土壤环境质量初步评价[J].环境科学学报,2004,24(2):297-303.
    [4]罗晓梅,张义蓉,杨定清.成都地区蔬菜中重金属污染分析与评价[J].四川环境,2003,22(2):49-51.
    [5]李泽琴,程温莹,罗丽,等.成都市蔬菜基地重金属污染状况分析[J].地质灾害与环境保护,2002,13(4):24-27.
    [6]李启权,王昌全,李冰,等.成都平原土壤中砷的空间分布及污染评价[J].土壤通报2007,38(2):357-360.
    [7]代英,张世熔,李婷,等.成都平原土壤Hg和Pb的空间分布及影响因素研究[J].农业环境科学学报,2006,25(3):745-750.
    [8]Burrough P A. Multi-scale sources of spatial variation in soil.I.The application of fractal concepts to nested levels of soil variation[J]. Soil Science,1983,34:643-659.
    [9]姜勇,李琪,张晓珂,等.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报,2006,17(1):97-101.
    [10]陈涛.杭州市城郊蔬菜地土壤重金属污染及其空间变异特征[D].杭州,浙江大学,2007.
    [11]钟晓兰,周生路,李江涛,等.长江三角洲地区土壤重金属污染的空间变异特征-以江苏省太仓市为例[J].土壤学报,2007,44(1):33-40.
    [12]李亮亮,张大庚,王廷松,等.葫芦岛市连山区、龙港区土壤重金属汞、铅及镍的空间分布及污染评价[J].土壤通报,2006,37(6):1207-1211.
    [13]施加春,刘杏梅,于春兰,等.浙北环太湖平原耕地土壤重金属的空间变异特征及其风险评价研究[J].土壤学报,2007,44(5):824-830.
    [14]Chang T K, Shy G S, Lin Y P, et al. Geostatistical analysis of soil arsenic content inTaiwan. Environment Engineer,1999,34(7):1485-1501.
    [15]王学军,席爽.北京东郊污灌土壤重金属含量的克里格插值及重金属污染评价[J].中国环境科学,1997,17(6):225-228.
    [16]张长波,李志博,姚春霞,等.污染场地土壤重金属含量的空间变异特征及其污染源识别指示意义[J].土壤,2006,38(5):525-533.
    [17]李红伟,李立平,刑维芹.不同小尺度下潮土重金属有效性空间变异研究[J].土壤,2006,38(6):782-789.
    [18]张庆利,史学正,黄标,等.南京城郊蔬菜基地土壤有效铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤,2005,37(1):41-47.
    [19]张继光,陈洪松,苏以荣,等.喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J].水土保持研究,2006,20(2):114-117,134.
    [20]姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270.
    [21]Shi Z, Wang K, Bailey J S, et al. Sampling stagegries for mapping soil phosphorus and soil potassium distributions in cool temperate grassland[J]. Precision Agriculture,2000,2:331-341.
    [22]Wu J, Norvell W A, Hopkins D G, et al. Improved prediction and mapping of soil copper by kriging with auxiliary data for cation-exchange capacity[J]. Soil Sci Soc Am J,2003,67,917-927.
    [23]李艳,史舟,程街亮,等.辅助时序数据用于土壤盐分空间预测及采样研究[J].农业工程学报,2006,22(6):49-55..
    [24]李艳,史舟,王人潮,等.海涂土壤剖面电导率的协同克里格法估值及不同取样数目的比较研究[J].土壤学报,2004,41(3):434-443.
    [25]Yates S R, Warrick A W. Estimating soil water cotent using cokriging[J]. Soil Sci.Soc.Am.J.1987,51: 23-50.
    [26]胡克林,李保国,陈德立,等.农田土壤水分和盐分的空间变异性及其协同克里格估值[J].水科学进展,2001,12(4):460-466.
    [27]Juang K W, Lee D Y. A comparison of three kriging methods using auxiliary variables in heavy metal contaminated soils[J]. J Envrion Qual,1998,27(2):335-363.
    [28]张任铎.空间变异理论及应用[M].北京,科学出版社,2005.
    [29]陈怀满,郑春荣,周东美,等.土壤环境质量研究回顾与讨论[J].农业环境科学学报,2006,25(4):821-827.
    [30]许宇飞,付玉华,张炜.沈阳市部分农田土壤重金属污染评价[J].农业环境与发展,1998,15(2):21-24.
    [31]余剑东,倪吾钟,杨肖娥.土壤重金属污染评价指标的研究进展[J].广东微量元素科学,2002,9(5):11-17.
    [32]李玲,冯新伟,路婕,等.基于不同标准的郑州市农产品产地土壤环境质量评价[J].农业工程学报,2008,24(8):89-94.
    [33]何忠俊,梁社往,洪常青,等.土壤环境质量标准研究现状及展望[J].云南农业大学学报,2004,19(6):700-704.
    [34]黄治平,徐斌.规模化猪场区域农田土壤重金属积累及影响评价分析[J].土壤通报,2008,39(6):641-646.
    [35]米艳华,王红华,陶祖盛,等.云南3种耕地类型土壤环境质量监测及评价分析[J].农业环境科学学报,2008,27(5):1836-1841.
    [36]唐将,王世杰,付绍红,等.三峡库区土壤环境质量评价[J].土壤学报,2008,45(4):601-607.
    [37]孟飞,刘敏,史同广,等.上海农田土壤重金属的环境质量评价[J].环境科学,2008,29(2);428-433.
    [38]符娟林,章明奎,厉仁安,等.基于GIS的杭州市居民区土壤重金属污染现状及空间分异研究[J].土壤通报,2005,36(4):575-578.
    [39]Gil G, Boluda R, Ramos J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain)[J]. Chemosphere,2004,55:1027-1034.
    [40]Brus D J, Gruijter J J, Romkens P F. Probabilistic quality standards for heavy metals in soil derived from quality standards in crops[J]. Geoderma,2005,128:301-311.
    [41]Franco C, Soares A, Delgado J. Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique[J]. Geodeima,2006,136: 852-864.
    [42]窦磊,周永章,王旭日,等.针对土壤重金属污染评价的模糊数学模型的改进及应用[J].土壤通报,2007,38(1):101-105.
    [43]檀满枝,陈杰,徐方明,等.基于模糊集理论的土壤重金属污染空间预测[J].土壤学报,2006,43(3):389-396.
    [44]Tan M Z, Xu F M, Chen J, et al. Spatial prediction of heavy metal pollution for soils in peri-urban Beijing, China based on fuzzy set theory[J].2006,16(5):545-554.
    [45]Horia F P, Jurgen W E, Costel S. Classical and fuzzy principal component analysis of some environmental samples concerning the pollution with heavy metals[J].2009,97:25-32.
    [46]Shen G Q, Lu Y T, Wang M N, et al. Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu lake region of China[J]. Journal of Environmental Management,2005,76:355-362.
    [47]史文娇,魏丹,汪景宽,等.双城市土壤重金属空间分异及影响因子分析[J].水土保持学报,2007,21(1):59-64.
    [48]姬兴杰,熊淑萍,刘元东,等.不同麦田土壤类型中重金属含量及其变化研究[J],农业资源与环境科学,2007,23(5):364-367.
    [49]秦松,樊燕,刘洪斌,等.地形因子与土壤养分空间分布的相关性研究[J].水土保持研究,2007,14(4):275-279.
    [50]毕如田,李华.不同地形部位耕地微量元素空间变异性研究-以永济市为例[J].土壤,2005,37(3):290-294.
    [51]Facchineli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Enviroment Pollution,2001,114(3):313-324.
    [52]郑海龙,陈杰,邓文婧.六合蒋家湾蔬菜基地重金属污染现状与评价[J].土壤,2004,36(5):557-560.
    [53]晁雷,周启星,崔爽,等.堆肥对土壤重金属垂直分布的影响与污染评价[J].应用生态学报,2007,18(6):1346-1350.
    [54]殷云龙,宋静,骆永明,等.南京市城乡公路绿地土壤重金属变化及其评价[J].土壤学报,2005,42(2):206-210.
    [55]冯洋,刘洪斌,王正银.土壤重金属铅的空间变异性研究-以重庆市吴滩镇为例[J].中国生态农业学报,2006,14(1):104-107.
    [56]Kocher B, Wessolek G, Stoffregen H. Water and heavy metal transport in roadside soils[J]. pedosphere,2005, 15(6):746-753.
    [57]Yang J, Huang Z C, Chen T B, et al. Predicting the probability distribution of Pb-increased lands in sewage irrigated region:A case study in Beijing, China[J]. Geoderma,2008,147:192-196.
    [58]Saby N, Arrouays D, Boulonne L, et al. Geostatistical assessmnet of Pb in soil around Paris, France[J]. Science of the Total Environmental,2006,367:212-221.
    [59]林键,邱亲卿如,陈建,等.公路旁土壤中重金属和类金属污染评价[J].环境与健康杂志,2000,17(5):284-286.
    [60]赵彦锋,史学正,于东升,等.工业型城乡交错区农业土壤Cu、Zn、Pb和Cd的空间分布及影响因素研究[J].土壤学报,2007,44(2):227-233.
    [61]赵彦锋,史学正,黄标,等.工业型城乡交错区农业土壤Zn的空间分异及影响因素子探讨-以无锡市为例[J].土壤,2006,38(1):29-35.
    [62]马建华,楚纯洁,李剑,等.铁路交通对铁路旁土壤重金属污染的影响-以陇海铁路郑州-圃田段为例[J].土壤通报,2007,38(1):128-132.
    [63]刘爱华,杨忠芳,张本仁,等.水稻土中Hg、Cd、Pb和As的空间变异特征及相关影响因素探讨-以四川孝感地区为例[J].第四纪研究,2005,25(3):396402.
    [64]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1996.
    [65]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-241.
    [66]陈牧霞,地里拜尔.苏力坦,杨潇,等.新疆污灌区重金属含量及形态研究[J].干旱区资源与环境,2007,21(1):150-154.
    [67]张乃明,李保国,胡克林,等.污水灌区耕层土壤中铅、镉的空间变异特征[J].土壤学报,2003,40(1):151-154.
    [68]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.
    [69]Characterizing the risk asseeement of heavy metals and sampling uncertainly analysis in paddy field by geostatistics and GIS [J]. Environmental Pollution,2006,141:257-264.
    [70]余先川,俞晨,候景儒,等.析取克里格理论及其在品味估计中的应用[J].北京师范大学学报(自然科学版),2006,42(5):495-497.
    [71]李贵荣,谢超,叶修松,等.基于栅格与矢量相结合的缓冲区分析算法研究[J].地矿测绘,2007,23(2):12-14.
    [72]Wang Y D, Feng N N, Li T X, et al. Spatial variability of soil cation exchange capacity in hilly tea plantation soils under different sampling scales[J]. Agricultural Sciences in China,2008,7(1):101-105.
    [73]庞夙,李廷轩,王永东,等.土壤速效氮、磷、钾含量空间变异特征及其影响因子[J].植物营养与肥料学报,2009,15(1):114-120.
    [74]赵其国,史学正.土壤资源概论[M].北京:科学出版社,2007.
    [75]杨羽贵,陈亚新.土壤水分盐分空间变异性与合理采样数研究[J].干旱地区农业研究,2002,20(4):64-66.
    [76]姚荣江,杨尽松,刘广明.黄河三角洲地区典型地块地下水特征的空间变异性研究[J].土壤通报,2006,37(6):1071-1075.
    [77]熊汉锋,王运华.梁子湖湿地土壤养分的空间异质性[J].植物营养与肥料学报,2005,11(5):584-589.
    [78]王晋民,王俊鹏,胡月明,等.栗钙土农田土壤养分空间变异特性及采样方法研究[J].干旱地区农业研究,2006,24(5):59-63.
    [79]王宗明,张柏,宋开山,等.东北平原典型农业县农田土壤养分空间分布影响因素分析[J].水土保持学报,2007,21(2):73-77.
    [80]庞夙,李廷轩,王永东,等.县域农田土壤铜含量的协同克里格插值及采样数量优化[J].中国农业科学,2009,42(8):2828-2836.
    [81]肖思思,黄贤金,彭补拙,等.经济发达县域耕地土壤重金属污染评价及其影响因素分析——以江苏省昆山市为例[J].长江流域资源与环境,2007,16(9):674-679.
    [82]孙英君,王劲峰,柏延臣.地统计学方法研究进展[J].地球科学进展,2004,19(2):268-274.
    [83]张世熔,孙波,赵其国,等.南方丘陵区不同尺度下土壤氮素含量的分布特征[J].土壤学报,2007,44(5):885-892.
    [84]GB15618-1995,土壤环境质量标准[S].国家环境保护总局.
    [85]HJ332-2006,食用农产品产地环境质量评价标准[S].国家环境保护总局.
    [86]赵沁娜,徐启新,杨凯.潜在生态危害指数法在典型污染行业土壤污染评价中的应用[J].华东师范大学学报(自然科学版),2005,3(1):111-116.
    [87]Marthley E, Gulson B, Pfeifer H. Metal concentrations in soils around the copper smelter and surrounding industrial complex of port kembla, NSW, Australia[J]. Science of the Total Environment,2004,325:113-127.
    [88]Nichloson F, Chambers B, Williams J, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresources Technology,1999,70:23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700