用户名: 密码: 验证码:
三种水生植物氨氮耐受性和冬季净水效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菹草(Potamogenton crispus)、西伯利亚鸢尾(Iris sibirica)、美人蕉(Canna glauca)是三种具有一定耐寒性水生植物,在水生态修复中极具开发利用价值,本文对三种植物的NH_4-N耐受性和冬季净水效果进行了研究,以期为北方寒冷季节水生植物生态修复提供理论和实践技术指导。
     三种水生植物NH_4-N耐受性和冬季净水效果研究主要结果有以下5个方面。
     (1)三种水生植物均具有很好的NH_4-N耐受能力,适合作为净化水质及水体生态修复的物种。菹草、西伯利亚鸢尾、美人蕉的NH_4-N耐受范围分别为0~2mg/L、0~10mg/L和0~20mg/L。
     (2)水体中NH_4-N浓度超过4mg/L时会对菹草有直接的胁迫效应,超过20mg/L时会对西伯利亚鸢尾有直接的胁迫效应,超过40mg/L时会对美人蕉有直接的胁迫效应,胁迫效应会随时间延长而加重。
     (3)三种水生植物在冬季低温条件下均能较好的净化水质,净水效果:菹草>美人蕉>西伯利亚鸢尾>对照(CK)。
     (4)主要水体污染物的去除率:NH_4-N>TN>NO_3-N>TP>COD,菹草、美人蕉、西伯利亚鸢尾系统对NH_4-N的净去除率分别为:84.58%、76.25%和75.83%;对TN的净去除率分别为:54.06%、44.76%和44.58%;对NO_3-N的净去除率分别为:44.90%、42.29%和40.30%;对TP的净去除率分别为:40.43%、29.78%和19.15%;对COD的净去除率分别为:35.47%、26.46%和26.46%。
     (5)通过对各个植物处理水质净化效果显著性差异分析,各植物处理组水质与对照(CK)相比均达到了显著性差异,可见植物在净化水质方面起到了很重要的作用。
Potamogenton crispus Iris sibirica and Canna glauca are three Cold-resistance water plants. They are three hydrophytes which offer very high potential for exploitation in water ecological restoration. The NH_4-N tolerance range and water purification in winter were studied. This study can provide theories and technique support for water ecological restoration.
     In the study of NH_4-N tolerance range and water purification in winter about this three water plants. We found five main results as follows:
     (1) The results indicates this three water plants have good abilitys to NH_4-N stress. They are three good water purification species in water ecological restoration. NH_4-N tolerance range of Potamogenton crispus、Iris sibirica and Canna glauca are 0~2mg/L、0~10mg/L and 0~20mg/L.
     (2) The results showed that high NH_4-N concentration culture solution have a direct stress effects to this three water plants and the effects accentated as time goes on. Potamogenton beyond its tolerance when NH_4-N concentration culture solution above 4mg/L. Iris sibirica beyond its tolerance when NH_4-N concentration culture solution above 20mg/L. Canna glauca beyond its tolerance when NH_4-N concentration culture solution above 40mg/L.
     (3) This three water plants have a good effect on water purification in winter. The order of their purifying effects is: Potamogenton crispus> Canna glauca >Iris sibirica>CK.
     (4) The order of their purifying effects to water quality is: NH_4-N>TN>NO_3-N>TP>COD. The pure water purification of Potamogenton crispus、Canna glauca and Iris sibirica to NH_4-N are: 84.58%、76.25% and 75.83%; The pure water purification of Potamogenton crispus、Canna glauca and Iris sibirica to TN are: 54.06%、44.76% and 44.58%; The pure water purification of Potamogenton crispus、Canna glauca and Iris sibirica to NO_3-N are: 44.90%、42.29% and 40.30%; The pure water purification of Potamogenton crispus、Canna glauca and Iris sibirica to TP are: 40.43%、29.78% and 19.15%; The pure water purification of Potamogenton crispus、Canna glauca and Iris sibirica to COD are: 35.47%、26.46% and 26.46%.
     (5) In the study of their purifying effects to water quality about difference significance analysis. We found the treatment have plants with the treatment without all significant differences. It is indidicates that plants have very important effect on water purification.
引文
[1] Ben Amor N, Jimenez A, Megdiche W, et al. Response of antioxidant systems to NH4-N stress in the halophyte Cakile maritima[J]. Physiologia plantarum,2006,126(3):446-457.
    [2] Britto D T. Futile transmembrane NH4-N cycling: acellular hypothesis to explain ammonium toxicity in plants[J]. Pro Natl Acad Sci,2001,98:4255-4258.
    [3] Brix H. Use of constructed wetland in water pollution control[J].Histroicald development, present status and future perspectives.Wat Scitech,1994,30(8):209-223.
    [4] Den Hartog C, Segal S. A new classification of the water-plant communities[J]. Acta Bot Neerl,1964,13:367-393.
    [5] Ernest Clarke, Andrew H. Baldwin Responses of wetland plants to ammonia and water level[J]. Ecological Engineering,2002,18:257-264.
    [6] Fernandez O A, Murphy K J, Lopoz Cazorla A, et al. Interrelationships of fish and channel environmental conditions with aquatic macrophytes in an Argentine irrigation system[J]. Hydrobiologia,1998,380:15-25.
    [7] House C H.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water[M].Ecol Eng,1999,12:27-38.
    [8] Jiang S H, Lin Yinfeng, Lee Deryuan, et al.Nutrient removal from polluted river water by using constructed wetlands [J].Bioresource Technology,2001,76:131-135.
    [9] Jorgensen S E, loffler H. Guidelines of lake management[M].Japan: ILEK&UNEP press,1990,3:127-138.
    [10] Mantai K E, Newton M E.Root growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus[J].Ecology,1978,59:1075-1080.
    [11] Martin. Eau, J R, Specht. J E. Temperature tolerance insoybeans[J]. Crop Science, 2006,29(19):75-81.
    [12] Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[J]. Hydrobiologia,1990,200/201:366-367.
    [13] Nalbur B, Akca L, Bayhan H. Nitrogen Removal during Secondary Treatmentby Aquatic System[J].Water Science and Technology,2003,48(11-12):355-361.
    [14] Nina C, Jens C S, Niel H S. Sensitivity of Aquatic Plant to the Herbicide Metsulfuron -methyl[J].Ecotoxicology and Environmental Safety,2004,57(2):153-161.
    [15] Paresh L, Bill F. Relationships Between Aquatic Plants and Environmental Factors Along a Steep Himalayan Altitudinal Gradient[J] .Aquatic Botany,2006,84(1):3-16.
    [16] Peuke D A, Tischner R.Nitrate uptake and reduction of aseptically cultivated spruce seedlings. J. Exp.Bot.,1991,239:723-728.
    [17] Sato K, Skulh, Sakai Y, et al. Long-term Experimental Study of the Aquatic Plant System for Polluted River Water[J].Water Science and Technology,2002,46(11-12):217-224.
    [18] Schulz R, Peall SKC. Effectiveness of a constructed wetland for retention of nonpoint source pesticide pollution in the Lourens River catchment, South Africa[J].Environ SciTechnol,2001,35:422-426.
    [19] Serna M D. Legaz BF, Primomillo E. The influence of nitrogen concentration and ammonium nitrate ratio on N-uptake mineral composition and yield of citrus[J]. Plant and Soil,1992,147:13-23.
    [20] Stone K C, Hunt P G, Novak JM, et al. In-stream wetland design for non-point source pollution abatement [J]. Applied Engineering in Agriculture,2003,19(2):171-175.
    [21] Tewari, R K, Praveen kumar, Sharma, P N. The influence of nitrogen concentration and ammonium nitrate ratio on N-uptake, mineral composition and yield of citrus[J]. Plant and Soil,1993.
    [22]Verhoeven JTA, Meuleman AFM.Wetlands for wasterwater treatment:Opportunities and linitations[J].Ecological Engineering,2008,12:5-12.
    [23]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报, 1999,32(6):87-92.
    [24]蔡建国,舒美英,吴家森.6种湿生植物污水胁迫逆境生理研究[J].园林植物,2008,10(2):101-106.
    [25]蔡建国.杭州湿地植物生态习性及景观设计研究[D].北京林业大学,2006.
    [26]曹优明.美人蕉人工湿地对城市生活污水的净化研究[J].环境科学与技术,2009,32(7):1125-1130.
    [27]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002,120-121.
    [28]陈开宁,胡耀辉.东太湖伊乐藻的营养繁殖及对渔业污水的净化[J].上海环境科学,2002,21:332-335.
    [29]陈志澄,管运涛,熊明辉,等.河岸荆三棱带改善河水水质的中试研究[J].环境科学,2006,28(6):557-561.
    [30]崔理华,朱夕珍,骆世明,等.垂直流人工湿地系统对污水磷的净化效果[J].环境污染治理技术与设备,2002,3(7):13-17.
    [31]邓焕广,陈振楼,许世远,等.夏季潮滩对上海老港垃圾填埋场渗滤液氮、磷净化效果研究[J].环境污染与防治,2005,27(6):401-406.
    [32]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320.
    [33]董哲仁,刘曾,向辉.受污染水体的生物生态修复技术[J].水利水电技术,2002,33(3):1-4.
    [34]范媛媛,袁妙淼,邓梅峰.高浓度氮、磷胁迫对伊乐藻SOD、POD和CAT活性的影响[J].氨基酸和生物资源,2007,29(3):665-670.
    [35]范媛媛,袁妙淼.高浓度氮、磷胁迫对伊乐藻SOD、POD和CAT活性的影响[J].氨基酸和生物资源,2007,29(3):113-117.
    [36]封福记,杨海军,于智勇.受损河岸生态系统近自然修复实验的初步研究[J].东北师大学报(自然科学版),2003,36(19):101-106.
    [37]付子轼,邹国燕,宋祥甫.适应近郊污染河道治理工程的生态浮床植物筛选[J].上海农业科技,2007:137-140.
    [38]高光.伊乐藻、轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996,8(2):189-193.
    [39]高氶民,李宪法.城市污水土地处理利用手册[M].中国标准出版社,1991,225-236.
    [40]郭长城,喻国华.菹草对污染河道水质的改善作用[J].水科学与工程技术,2006,5:158-162.
    [41]郭俊秀,许秋瑾,金相灿,等.不同磷质量浓度对穗花狐尾藻和轮叶黑藻生长的影响[J].环境科学学报,2009,29(1):77-82.
    [42]郭俊秀.营养盐对沉水植物生长指标和合抗氧化酶系统的影响[D].内蒙古农业大学硕士学位论文,2008.
    [43]国家环境保护总局水和废水监测分析方法编委会,水和废水监测分析方法[M].中国环境科学出版社,2002:276-281.
    [44]韩潇源,宋志文,李培英.高效净化氮磷污水的湿地水生植物筛选与组合[J].湖泊科学,2008,20(6):741-747.
    [45]胡康萍,刘少宁.一种经济、有效、可靠的污水处理技术—人造湿地系统[J].环境工程,1991,9(2):6-10
    [46]黄娟,王世和,钟秋爽,等.植物生理生态特性对人工湿地脱氮效果的影响[J].生态环境学报,2009,18(2):558-560.
    [47]黄蕾,翟建平,王传瑜,等.4种水生植物在冬季脱氮除磷效果的试验研究[J].农业环境科学学报,2005.24(2):128-132.
    [48]黄时达,王庆安.从成都活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8-12.
    [49]黄祥飞主编.湖泊生态调查与分析[M].北京:中国标准出版社, 1999. 59-62.
    [50]籍国东,孙铁珩.人工湿地及其在工业废水处理中的应用[J].应用生态学报, 2002,13:224-228.
    [51]江浩,吴涛,孙怡超.人工浮床不同植物对水质净化效果试验研究[J].海河水利,2009,18(4):318-322.
    [52]蒋永荣,莫德清,段钧远,等.不同植物配置人工湿地冬季生活污水净化效果比较[J].水生生物学报,2009,25(3):606-610.
    [53]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1718-1723.
    [54]金送笛,李永函,王永利.几种生态因子对菹草光合作用的影响[J].水生生物学报,1991,15(4):289-293.
    [55]金相灿,郭俊秀,许秋瑾,等.不同质量浓度氨氮对轮叶黑藻和穗花狐尾藻抗氧化酶系统的影响[J].生态环境,2008,17(1):88-93.
    [56]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000,105:164-165,260.
    [57]李建娜,胡曰利,吴晓芙,等.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防治,2007,19(7):505-509.
    [58]李琳,刘娜娜,达良俊.鸢尾和菖蒲不同器官对富营养化水体中氮磷的积累效应[J].环境污染与防治,2006,28(12):902-907.
    [59]李睿华,管运涛,何苗,等.美人蕉河岸带处理受污染河水的中试研究[J].中国给水排水,2009,25(9):600-604.
    [60]李文朝,杨清心,周万平.五里湖营养状况及治理对策探讨[J].湖泊科学, 1994,6(2):113-117.
    [61]李文朝.线型富营养湖泊的生态恢复-五里湖水生植被重建实验[J].湖泊科学,1996,8(增刊):1-10.
    [62]李艳红,解庆林,白少云,等.利用人工湿地系统深度处理城市污水尾水[J].环境工程, 2006,24(3):488-493.
    [63]连光年,张圣照.伊乐藻等水生高等植物的快速营养繁殖技术和栽培方法[J].湖泊科学,1996,8(6):11-16.
    [64]廖新佛,骆世明,吴银宝,等.人工湿地植物筛选的研究[J].草业学报,2004,13(5):39-45.
    [65]廖新佛,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J].应用生态学报,2002,13(13):56-59.
    [66]林连升,缪为民.沉水植物在池塘养殖生态系中的水质改良作用[J].水产科学,2005,24(12):456-460.
    [67]刘成.东北第一座人工湿地污水生态处理厂进行调试[J].给水排水,2004,30(1):111
    [68]刘佳,刘永立.水生植物对水体中氮、磷的吸收与抑藻效应的研究[J].核农学报, 2007,21(3):400-403.
    [69]刘礼祥,刘真.人工湿地在非点源污染控制中的应用[J].华中科技大学学报, 2004.21(1):40-43.
    [70]马广岳,施国新,杜开河,等.Cr6+、Cr3+胁迫对黑藻生理生化影响的比较研究[J].武汉植物学研究,2009:112-115.
    [71]马剑敏,靳同霞.伊乐藻、苦草和菹草对磷急性胁迫的响应[J].水生生物学报, 2008,32(3):234-237.
    [72]马剑敏,靳同霞,靳萍.伊乐藻和苦草对硝氮胁迫的响应[J].河南师范大学学报(自然科学版),2007,35(3):1178-1183.
    [73]莫妙少.沉水植物在富营养化水体中的环境效应研究[D].河海大学硕士论文,2007.
    [74]慕君玲,李佳华.伊乐藻对菲的去除作用及生理响应[J].山东师范大学学报(自然科学版),2007,22(2):228-231.
    [75]孙连鹏,刘阳,冯晨,等.不同季节浮床美人蕉对水体氮素等污染物的去除[J].中山大学学报,2008,47(2):4404-4407.
    [76]孙游云,沈奕红.养殖伊乐藻治理富营养水体—以浙江慈溪市的实验为例[J]. 2005,11(4):168-173.
    [77]谈健康,安树青,王铮锋,等.NaCl,Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998,(15):82-86.
    [78]汤显强,李金中,李学菊,等.7种水生植物对富营养化水体中氮磷去除效果的比较研究[J].亚热带资源与环境学报,2007,2(2):112-117.
    [79]佟海英,原海燕,黄苏珍.两种鸢尾幼苗对Cd胁迫的生理耐性探讨[J].北方园艺,2008,17(11):217-221.
    [80]万晓红,刘玲花,王雨春,等.水生植物模拟湿地对受污河水中氮素去除的初步研究[J].水利水电技术,2007,38(11):1616-1621.
    [81]王斌,周莉苹,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究[J].武汉植物学研究,2009,20:723~728.
    [82]王超,王沛芳.河道沿岸芦苇带对氨氮的削减特性研究[J].水科学进展,2003,14(3):311-317.
    [83]王薇,李传奇.河流廊道与生态修复[J].水利水电技术,2003,34(9):56-58.
    [84]王文林,王国祥.菹草-伊乐藻群落对富营养化水体水质的净化效果[J].南京师大学报(自然科学版),2006,29(4):404-407.
    [85]吴建强,丁玲.不同植物的表面流人工湿地系统对污染物的去除效果[J].环境污染与防治,2006,28(6):600-604.
    [86]吴振斌,邱东茹.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报, 2003,14(8):1351-1353.
    [87]夏汉平.香根草和水花生对垃圾污水中N、P、Cl的吸收效果[J].植物生态学报, 2000,24(5):613-616.
    [88]肖德林.家禽废水胁迫对芦苇生理特性的影响[D].四川农业大学硕士论文,2007.
    [89]肖惠萍,成水平,吴振斌.三唑磷胁迫对美人蕉生长发育及生理生化的影响[J].河南师范大学学报,2008,36(3):111-116.
    [90]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].湿地科学, 2005,3(3):58-64.
    [91]严晔端.芦苇渗滤湿地污水运移规律[A].水污染防治及城市污水资源化技术[C].北京,1991,348-353.
    [92]颜昌宙,曾阿妍,金相灿,等.不同浓度氨氮对轮叶黑藻的生理影响[J].生态学报, 2007,27(3):1050-1055.
    [93]阳承胜,蓝崇钰,张干.N、P、K在宽叶香蒲人工湿地系统中的分布与积累[J].深圳大学学报(理工版),2005,22(3):264-268.
    [94]杨文斌,王国祥.南京玄武湖菹草种群的环境效应[J].湖泊科学,2007,19(5):256-261.
    [95]杨晓慧,蒋卫杰,魏氓,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305.
    [96]杨彦军,韩会玲,龚欣欣.不同植物净化富营养化水体的静态试验研究[J].中国农村水利水电,2009,28(4):389-393.
    [97]俞孔坚,李迪华.湿地及其在高科技园区中的营造[J].中国园林,2001,2:26-28.
    [98]袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮的比较[J].应用生态学报,2004,15(12):2337-2341.
    [99]张超兰,陈文慧,韦必冒,等.几种湿地植物对重金属镉胁迫的生理生化响应[J].生态环境, 2008,17(4):334-338.
    [100]张超兰,陈秀娟,韦必帽,等.沉水、挺水培养水生植物去除污水中氮磷的效果研究[J].西南农业学报,2009,22(3):786-790.
    [101]张军,周琪,何蓉.表面流人工湿地中氮、磷的去除机理[J].生态环境,2004,13(1):56-60.
    [102]张兰芳.水质条件对沉水植物(伊乐藻、菹草)生长的影响[D].河海大学硕士论文,2006.
    [103]张爽,郭成久,苏芳莉,等.不同盐度水灌溉对芦苇生长的影响[J].沈阳农业大学学报, 2008,39(1):65-68.
    [104]赵立峰,林东教,罗键,等.3种植物对人工污水中铬和铅的耐受性研究[J].内蒙古农业大学学报,2007,28(3):335-338.
    [105]赵丽娜,丁为民,鲁亚芳,等.几种春季湿地植物对污水中主要污染物去除效果的比较[J].污染防治技术,2007,20(1):417-421.
    [106]郑天柱,周建仁,王超.污染河道的生态修复机理研究[J].环境科学,2002,23:115-117.
    [107]中国植物志第十六卷第一分册.中国农业出版社,1985.
    [108]周炜,谢爱军,年跃刚,等.人工湿地净化富营养化河水试验研究[J].净水技术, 2006,25(3):478-483.
    [109]周晓红,王国祥,冯冰冰,等.3种景观植物对城市河道污染水体的净化效果[J].环境科学研究,2009,22(1):421-426.
    [110]朱伟,陈清锦,张兰芳.伊乐藻在冬季低温条件下对污染水体的净化效果[J].生态环境, 2004,13(4):55-60.
    [111]朱伟,张兰芳.水污染对菹草及伊乐藻生长的影响[J].水资源保护,2006,22(3):723-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700