用户名: 密码: 验证码:
西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲玛铜多金属矿床构造上位于冈底斯火山—岩浆弧东段,矿床就位于甲玛—阿多中生代盆地中段中部,矿体主要赋存于甲玛弧后盆地上侏罗统多底沟组矽卡岩中和角岩的构造裂隙带内,矿体受继承于层间构造的区域性推覆构造、矿区滑覆构造及其所产生的次级褶皱控制。矿体在平面上呈北西西走向,倾向北北东,矿体总体上隐伏-半隐伏,呈层状、似层状、透镜状,矿体在走向上长3400米,沿倾向方向延伸超过2000米。整个矿床的形成可分为5个阶段:岩浆-热液阶段、岩浆期后热液阶段、干矽卡岩阶段、湿矽卡岩阶段、石英-硫化物-方解石阶段。
     对熔融包裹体和流体中包裹体的测温研究可知甲玛铜金属矿床斑岩体形成温度为730-1080℃,斑岩体中流体开始出溶的压力为59.1 MPa。5个成矿阶段的温度为170~540℃,盐度集中在15%-50%范围内,密度为0.9233-1.0805g/cm3,成矿流体主要为NaCl -H2O体系和NaCl-CO2-H2O体系共存。成矿压力小于37.3MPa,主要成矿于0.6519深度以上,属浅成高温岩浆热液矿床。
     通过流体包裹体的离子成分、气相成分比值与图解、氢氧同位素数据分析,表明甲玛铜金属矿床的成矿流体为岩浆来源,并具有后期大气降水的混入。成矿流体的形成和演化经历了岩浆出溶、超临界流体的相分离、流体的减压沸腾作用,岩浆热液、挥发分与碳酸盐围岩接触带的充填/交代作用。岩浆-热液演化过程中的成矿元素,从最早的岩浆结晶分异阶段开始到岩浆期后热液阶段,都强烈地选择性进入挥发份气相中进行迁移。成矿流体温度降低,Eh升高,pH、fO2、fS2降低,是引起溶液中铜、金、钼等的硫化物发生沉淀的有利条件,流体的减压沸腾、混合作用最终导致成矿元素的沉淀。甲玛铜多金属矿床的斑岩岩浆经历了下地壳和地幔的混染地质作用,矿床在成因上与统一的斑岩-矽卡岩-浅成低温热液成矿系统中的岩浆-热液成矿作用有关。
Jiama polymetallic copper deposit locates in east of Gangdese volcano - magmatic arc. The main orebodies are hosted in stratiform structural zone between limestone of the upper Jurassic and sandy slate, chert of the low Cretaceous, and are controlled by sub-fold produced regional thrust nappe structure and ore field gliding nappe structures. The length is about 3400m with the strike NWW and over 2000m with the dip NNE. The orebodies are blindsemi-blind overall. The morphology of orebodies are stratiform,beded,lenticular. The stages for the formation of the deposit are magmatic–hydrothermal transitional stage, postmagmatic hydrothermal stage, prograde stage, retrograde stage and quartz- sulfide-calcite stage.
     The study on homogenization and the characteristics of melt inclusions and fliud inclusions in Jiama Polymetallic Copper Deposit show that the porphyry body’s formation temperature is 730-1080℃, the exsolution pressure of fluid is 59.1 MPa. The temperature of five mineralization stages is 170-540℃, the salinity concentrate in 15%-50%,and the density is 0.9233-1.0805g/cm3. The ore-forming fluids is mainly NaCl-H2O system and NaCl-CO2-H2O system. Ore pressure is less than 37.3MPa, mineralized mainly above 0.6519km, it is a high temperatured,hypabyssal and magmatic-hydrothermal deposit
     The ratio of ion compositions, gas compositions, illustrated diagrams and the analysis of oxygen and hydrogen isotope, indicate that the ore-forming fluids of Jiama Polymetallic Copper Deposit is origined from magma, with the mixing of precipitate water in later period. The formation and evolution of ore-forming fluids experienced exsolution of magma, phase separation of supercritical fluid, decompression and boiling, the filling or metasomatism between magmatic hydrotherm-volatile and carbonate wall rocks. The metallogenic elements selectively enter in the volatile and transport. Decreasing temperature,pH,fO2,fS2 and increasing Eh are the favourable conditions for the deposition of sulfides such as Cu,Au,Mo in the Ore-forming fluids. The decompression,boiling,and mixing cause the deposition of metallogenic elements finally. The porphyry magma experienced contamination of upper earth crust and earth mantle. The deposit genesis is related to magmatic-hydrothermal mineralization in the Unified Porphyry- Skarn-Epithermal Ore-forming system.
引文
[1]侯增谦,王二七,莫宣学,丁林,盘桂棠,张中杰,等.青藏高原碰撞造山与成矿作用[M].北京:地质出版社,2008.
    [2]杜光树,姚鹏.喷流成因矽卡岩与成矿[M].成都:四川科学技术出版社,1998.
    [3]姚鹏,郑明华,彭勇民,李金高,粟登奎,范文玉.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,2002,48(5):468-479.
    [4]潘风雏,邓军,姚鹏,王庆飞,刘玉祥.西藏甲马铜多金属矿床矽卡岩的喷流成因[J].现代地质, 2002,16(4):359-364.
    [5]冯孝良,管仕平,牟传龙,等.西藏甲马铜多金属矿床的岩浆热液交代成因-地质与地球化学证据[J].地质地球化学, 2001,29 (4):40-48.
    [6]孟祥金,侯增谦,高永丰.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及其成矿意义[J].地质评论, 2003,49(6):660-666.
    [7]张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997,16(3):53-58.
    [8]Burnham C W, Ohmoto H. Late magmatic and hydrothermal processes in ore formation[A].Studies in Geophysics, Mineral Resources: Genetic Understandingfor Practical Applications[C]. Washington D C:National Academy Press, 1981, 62-72.
    [9]Burnham C W. Magma and hydrothermal fluids [A]. BARNES H L.Geochemistry of Hydrothermal Ore Deposits [C]. New York: John Wiley, 1979, 71-136.
    [10]Burnham C W. Magma and hydrothermal fluids [A]. BARNES H L.Geochemistry of Hydrothermal Ore Deposits [M]. New York: John Wiley, 1997, 63-123.
    [11]Harris A C, Kamenetsky V S, White N C and Steele D A. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina[J].Resource Geology, 2004, 54: 341-356.
    [12]Candela P A,Blevin P L.Do some miarolitic granites preserve evidence of magmatic volatile phase permeability? [J].Economic Geology, 1995, 90:2310-2316.
    [13]Lowenstern J B,Sinclair W d.. Exsolved magmatic fluid and its role in the formation of comblayered quartz at the Cretaceous Logtung W-Mo deposit,Yukon Territory,Canada [J].Transactions of the Royal Society of Edinburgh:Earth Science , 1996, 87:291-303.
    [14]Harris A C,Kamenetsky V S,White N C. Immiscible magmatic volatiles in the Bajo de la Alumbrera Cu-Au porphyries:Melt and fluid inclusions record in quartz eyes[C]. 2003, In The 7th Biennial Meeting,Sciety for Geology Applied to Mineral Deposits.
    [15]杨志明,侯增谦,李振清,宋玉财,谢玉玲.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录[J].矿床地质,2008,41(2):21-26.
    [16]Shinohare H,Kazahaya K. Degassing processes related to magma-chamber crystallization[J]. Mineralogical Association of Canada Short Course Series, 1995, 23:47-70.
    [17]Shinohara H,Hedenquist J W. Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit[J]. Philippines.Journal of Petrology, 1997, 38:1741-1752.
    [18]Zhou Yun, Wang Xiongwu, Chen Bing, Zhou Qiang, Zhu Shuhong.2009. Sumary of studing on metallogenesis of magmatic Ni-Cu-PGE sulfide deposits[A].In: Research Progress on Magmatic Ni-Cu Sulfide Deposits: Mineralization in Small Intrusions and Conduits[C].Xi’an:Science Press,2009,37-38.
    [19]Qin Zhipeng,Wang Xiongwu,Zhou Yun,Zhou Qiang,Zeng Qiang. General characteristics of fluid inclusions in magmatic Ni-Cu-PGE sulfide deposits[A].In:Research Progress onMagmatic Ni-Cu Sulfide Deposits:Mineralization in Small Intrusions and Conduits[C].Xi’an:Science Press, 2009, 24-25.
    [20]李荫清,芮宗瑶,程莱仙.玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究[J].地质学报,1981,55(3):216-231.
    [21]张绮玲,曲晓明,徐文艺,等.西藏南木斑岩铜铜矿床的流体包裹体研究[J].岩石学报, 2003,19(2):251-259.
    [22]谢玉玲,衣龙升,徐九华,李光明,杨志明,尹淑苹.冈底斯斑岩铜矿带冲江铜矿含矿流体的形成和演化:来自流体包裹体的证据[J].岩石学报, 2006,22(4):1023-1030.
    [23]杨志明,谢玉玲,李光明,徐九华.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探,2005,41(2):21-26.
    [24]Redmond P B, Einaudi M T, Inan E E, Landtwing M R, Heinrich CA. Copper deposition by fluid cooling in intrusion centered systems: new insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 2004, 32(3): 217-220.
    [25]Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposit[C]:In Porter T.M(ed.).Super-Porphyry Copper&Gold Deposit:A Global Perspective[M].PGC Publishing,Adelaide, 2005, 7-25.
    [26]杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质, 2009,28(5):515-538.
    [27]孟祥金,侯增谦,李振清.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报, 2006,80(4):554-560.
    [28]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal of deposits[J]. Nature, 1994, 370: 519-527
    [29]Cline J S, Bodnar R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?[J].Journal of Geophysical Research-Solid Earth, 1991, 96(B5): 8113-8126.
    [30]杨志明,谢玉玲,李光明,徐九华,王葆华.西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J].矿床地质, 2005,24(6):584-594.
    [31]周云,汪雄武,陈兵,秦志鹏,侯林,张欣,彭慧娟,赵岩.流体包裹体在深部找矿中的应用[J].矿物学报, 2009,29(S1),274-275.
    [32]Pierfranco Lattanzi. Applications of fluid inclusions in the study and exploration of mineral deposits[J].Eur.J.Mineral, 1991, 3: 689-701.
    [33]Bodnar R.J. Application of Fluid Inclusions in Mineral Exploration[J].Geochimica et Cosmochimica Acta, 2008, 57:683-684.
    [34]邬春学,黄宇营,杨春.基于SR-XRF的单个流体包裹体无损分析及其在石油地质中的应用[J].核技术,2002,25(10):793-798.
    [35]于福生,袁万明,韩松,等.同步辐射X射线荧光微探针技术测定熔融包裹体中的微量元素[J].高能物理与核物理, 2004,27(2):188-199.
    [36]汤云晖,韩春明,保增宽,等.磷灰石及其流体包体SR-XRF分析[J].核技术,2005,28(8):580-582.
    [37]罗红宇,彭明生,黄宇营,等.金绿宝石和变石中的微量元素研究[J].矿物学报, 2006,26(1):77-83.
    [38]Yin J,Xu J,LiuC,et a1. TheTibetan Plateau:RegionalStrati graphic Context and Previous Work[M].London:Phil Trans.Roy.Soc.Lond.1988, 327:5-52.
    [39]Allegre C J et al.. Structure and cvloution of the Himalayan-Tibet orogenic belt[J].Nature,1984, 307:12-17.
    [40]Durr S B. Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous,south Tibet) [J].Geol.Soc.Am.Bull, 1996, 108:669-684.
    [41]Harrsion T M,Copeland P and Kidd W S F. Activation of the Nyainqentanghla shear zone:implication for uplift of the southern Tibetan Plateau[J].Tectonics, 1995, 14:658-676.
    [42]Coleman M and Hodges K. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extensionl[J].Nature, 1995, 374:49-52.
    [43]侯增谦,吕庆田,王安建,等.初论陆一陆碰撞与成矿作用—以青藏高原造山带为例[J].矿床地质,2003,22(4):319-334.
    [44]李光明,刘波,屈文俊,林方成,佘宏全,丰成友.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:—来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学, 2005,29(4):482-490.
    [45]曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二个“玉龙”铜矿带[J].矿床地质, 2001,2O(4):355-366.
    [46]郑有业,王保生,樊子珲,等.西藏冈底斯东段构造演化与铜多金属成矿潜力分析[J].地质科技情报,2002,21(2):55-60.
    [47]李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学, 2004,28(2):165-170.
    [48]唐菊兴,陈毓川,多吉,刘鸿飞,杜欣,张金树,郑文宝,高一鸣.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价[J].矿物学报, 2009,29(S1),476-478.
    [49]郑文宝.西藏墨竹工卡县甲玛铜多金属矿矿床地球化学特征[D].成都,成都理工大学,2009.
    [50]李桃叶,刘家齐.矿物中群体包裹体成分分析方法讨论[J].华南地质与矿产,2000(4):64-67.
    [51]李桃叶,翟丽娜,刘家齐.矿物包裹体成分、稳定同位素组成联测及地质应用[J].华南地质与矿产,2008(2):72-76.
    [52]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999.
    [53]Bischoff,J.L.. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300℃to 500℃[J].Amer.J.Sci., 1991, 291: 309-338.
    [54]Roedder E.The composition of fluid inclusions[A].U S Geological Survey Paper 440 JJ[C].1972,164.
    [55]费红彩,肖荣阁.成矿流体演化与成矿物理化学[J].矿物岩石地球化学通报,2008,21(2):139-144.
    [56]Chi,G. B.,Williamson,K.&Williams-Jones,A.E. Formation of the Campbell-Red Lake gold deposit by H2O-poor,CO2-dominated fluids[J].Minerallium Deposita, 2006, 40:726-741.
    [57]徐九华,谢玉玲,丁汝福,阴元军,单立华,张国瑞. CO2-CH4流体与金成矿作用:以阿尔泰山南缘和穆龙套金矿为例[J].岩石学报, 2007,23(8):2026-2032.
    [58]卢焕章. CO2流体与金矿化:流体包裹体的证据[J].地球化学, 2007,7(4):321-328.
    [59]秦志鹏,汪雄武,周云,侯林,张欣,彭慧娟,赵岩.富CO2流体与金矿化的关系[J].矿物学报, 2009b,29(S1),240-241.
    [60]Rusk B G, ReedM H, Dilles J H, Klemm LM andHeinrich C A. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyrycopper-molybdenum deposit at Butte, MT [J].Chemical Geology, 2004, 210: 173-199.
    [61]Eastoe C J. Physics and chemistry of the hydrothermal system at the Pangua porphyry deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 1982, 77:127-153.
    [62]Canadela P A. A review of shallow, ore-related granites: textures, volatiles, and ore metals[J].Journal of Petrology, 1997, 38(12):1619-1633.
    [63]Henley RW, Mcnab B A. Magmatic vaporplumes and ground-water interaction in porphyry copper emplacement[J]. Economic Geology, 1978, 73(1): 1-20.
    [64]Heinrich C A, Günther D, Audétat A, Ulrich T and Frischknecht R. Metal fractionation between magmaticbrine and vapor, determined by microanalysis of fluid inclusions[J].Geology, 1999, 27: 755-758.
    [65]Drummond S E and OhmotoH. Chemical evolution and mineral deposition in boiling hydrothermal systems[J].Economic Geology, 1985, 80: 126-147.
    [66]Ulrich T, GuntherD andHeinrich C A. Gold concentrations ofmagmatic brines and the metal budget of porphyrycopper deposits [J].Nature, 1999, 399: 676-679.
    [67]Mavrogenes J A, Berry A J, NewvilleM, et al. Copper speciation in vapor2phase fluid inclusions from the Mole Granite, Australia [J]. Am erican M ineralogist, 2002, 87: 1360-1364.
    [68]Baker T, Achterberg E V, Ryan C G and Lang J R. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology, 2004, 32(2): 117-120.
    [69]包志伟.成矿金属元素的气相运移研究进展[J].大地构造与成矿学, 2007,31(1):83-91.
    [70]周云,汪雄武,陈兵,彭惠娟,秦志鹏.陕西青山金矿床成矿流体特征研究[J].黄金, 2009,30(11),8-12.
    [71]John Lusk, D. Maxwell Bray. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460℃[J]. Chemical Geology, 2002, 192:227-248.
    [72]夏林圻.岩浆岩中的熔体包裹体[J].地学前缘, 2002,9(2):403-414.
    [73]Student J.J.,Robert J. Bodnar. Silicate melt inclusion in porphyry copper deposits:identification and homogenization behavio[J].The Canadian Mineralogist, 2004, 42: 1583-1599.
    [74]Anderson, A.T. . Hourglass inclusions:theory and application to the Bishop rhyolitic tuff[J].Am. Mineral, 1991, 76:530-547.
    [75]Skirius, C.M., PETERSON, J.W ,ANDERSON, A.T., JR. . Homogenizing rhyolitic glass inclusions from the Bishop Tuff[J].Am. Mineral. 1990, 75:1381-1398.
    [76]Webster, J.D. Thomas, R., Rhede, D., F?RSTER, H.-J. &SELTMANN, R. . Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus phosphorusrich residual liquids[J]. Geochim. Cosmochim. Acta, 1997, 61:2589-2604.
    [77]Qin, Z., Lu, F. , Anderson, A.T., JR. Diffusive reequilibration of melt and fluid inclusions[J].Am. Mineral. 1992, 77:565-576.
    [78]NIELSEN, R.L., MICHAEL, P.J. ,SOURS-PAGE, R.. Chemical and physical indicators of compromised melt inclusions[J].Geochim. Cosmochim Acta, 1998, 62:831-838.
    [79]Danyushevsky, L.V., Della Pasqua, F.N.,Sokolov, S. Re-equilibration of melt inclusions trapped bymagnesian olivine phenocrysts from subduction-relatedmagmas: petrological implications[J].Contrib. Mineral. Petrol. 2000, 138:68-83.
    [80]Student, J.J. , Bodnar, R.J. Synthetic fluid inclusions. XIV. Microthermometric andcompositional analysis of coexisting silicate melt and aqueous fluid inclusions trapped in the haplogranite–H2O–NaCl–KCl system at 800℃and 2000 bars[J].J. Petrol. 1999, 40:1509-1525.
    [81]Student, J.J. ,Bodnar, R.J. Melt inclusion microthermometry: petrologic constraints from the H2O-saturated haplogranite system[J].Petrology, 1996, 4:291-306.
    [82]Cline and Bodnar, R.J. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit[J]. Econ. Geol. 1994, 89:1780–1802.
    [83]Shinohara,H. Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt:Implications for chlorine and metal transport. Geochim[J].Cosmochim Acta,1994,58:5215-5221.
    [84]Bodnar Iu. Fluid evolution in porphyry copper deposits[abs]:Goldschmidt Conference,Toulouse, l998, abstracts:l80-l8l.
    [85]李建康,张德会,王登红,张文淮.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J].地质评论, 2008,54(2):175-183.
    [86]Zartman R. E.,Doe,B.R..Plumbotectonics-the model[J].Tectonophysics,1981, 75(1-2):135-162.
    [87]佘宏全,丰成友,张德全,李光明,刘波,李进文.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,2006,22(03):689-696.
    [88]Cline JS. How to concentrate copper[J].Science, 2003, 302(5653):2075-2076.
    [89]Heinrich CA. Fluid-fluid interations in magmatic-hydrothermal ore formation[J].Review in mineralogy and geochemistry, 2007, 65(1):363-387.
    [90]孟祥金,侯增谦,李振清.西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究[J].矿床地质, 2005,24(4):398-408.
    [91]冷成彪,张兴春,秦朝建,王守旭,任涛,王外全.滇西北雪鸡坪斑岩铜矿流体包裹体初步研究[J].岩石学报,2008,24(9):414-422.
    [92]Bodnar Iu and Cline J. F1uid inclusion petrology of porphyry copper deposits revisited: Re-interpretation of obselved characteristics based on recent experimental and theoretical data[J].Plinius. 1991, 5:24-25.
    [93]李光明,芮宗瑶,王高明,林方成,刘波,余宏全,丰成友,屈文俊.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质, 2005,24(5):481-489.
    [94]应立娟,唐菊兴,王登红,畅哲生,屈文俊,郑文宝.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,2009, 28(3):265-268.
    [95]王亮亮,莫宣学,李冰,董国臣,赵志丹.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报, 2006,22:1001-1008.
    [96]曲晓明,侯增谦,李振清.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及其地质意义[J].地质学报, 2003,77(2):245-252.
    [97]芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质, 2003,22(3):217-225.
    [98]李金祥,秦克章,李光明,杨列坤.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约[J].岩石学报, 2007,23(5):953-966.
    [99]魏俊浩,李江风,刘铁侠,许相男.辽南地区金矿床流体包裹体特征及找矿意义[J].地质找矿论丛, 1998,13(1):33-39.
    [100]周云,汪雄武,陈兵,秦志鹏,彭惠娟.陕西青山金矿深部找矿前景评价研究[J].地质与勘探, 2009,45(5),493-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700