用户名: 密码: 验证码:
漠河地区多年冻土物理力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目来源于220kV塔河-漠河输电线路新建工程。该工程为中俄石油管道正常运行提供必需的电力设备。对于输电线路,风荷载作用在沿途电线上,引起水平弯矩,使桩基础受上拔力。衔接型多年冻土提供极好的抗拔力,但冻融病害是承载力的控制关键。因此,研究该场地土体对杆塔基础承载力的影响是非常必要的。
     本文主要研究内容:首先,对取自塔河-漠河输电线路场地101个原状多年冻土的物理力学指标的测定,包括冻土密度、含水量、颗粒分析、起始冻结温度、导热系数、冻胀系数、融沉系数、单轴抗压强度等八项试验87个土样的试验。实验结果表明塔河-漠河输电线路场地第②层粉质粘土混角砾(含碎石)层以及第②1层淤泥质粉质粘土混角砾层对新建工程杆塔基础承载力影响最大。主要表现为,在土体密度基本相同的情况下,该层土体的含水量较大,由于处于桩土相互作用段,属于特强冻胀、强融沉饱冰冻土,将产生较大冻胀量、融沉量,影响桩基承载力。因此,进行桩基础承载力计算时,应特别考虑第②1层淤泥质粉质粘土混角砾层土的强融沉特点产生的负摩阻力,桩端位于第③层粉质粘土混角砾层比第④层粉质粘土混碎石层更有利。
     其次,对英国原产核磁共振仪的引进,以及配套制冷设备的研发,用于模拟低温环境;根据冰融化过程中固态冰、结合水、液态水的衰减速度不同,找到冰、水对应的弛豫时间;通过核磁共振仪用NMR法测定冻土中未冻水含量,解决了目前未冻水含量检测难度大、精度差的问题;通过试验分析得到温度对原状冻土未冻水含量的影响规律。
This project comes from the 220kV Tahe - Mohe new construction of transmission lines. It is for the China-Russia oil pipeline’s running to provide the necessary electrical equipment. For transmission lines, wind load along the wire causes the horizontal bending moment. So, the pile foundation is subjected to uplift. Interface type permafrost provides excellent resistance to uplift but freezing and thawing disease control is the key to carrying capacity. Therefore, the study of the site based on soil bearing capacity of the foundation of the transmission tower is necessary.
     The main investigation contents: First, 101 soil samples are collected from Tahe - Mohe transmission lines field in permafrost to determine physical and mechanical indicators, including the test of density of the frozen soil, water content, particle analysis, the initial freezing temperature, thermal conductivity, frost-heave coefficient, thawing settlement coefficient and uniaxial compressive strength of 87 soil samples from eight experiments. Experimental results show that the②clay breccia (including gravel) layer and the②1 silt clay mixed breccia layer of the Tahe - Mohe transmission lines site have the greatest impact on the bearing capacity of the foundation of the transmission towers. This is mainly in the form of representation of that when the density in the soil is the same, the water content of soil layers is much greater, so during the pile-soil interaction section, the layer which belongs to particularly strong frost, strong thaw frozen saturated soil will have a greater frost-heave amount and thermal amount to impact on the bearing capacity of the foundation. Thus, for bearing capacity of the foundations, special consideration should be given to the②1 layer of silt clay soil mixed breccia layer with thaw characteristics, causing strong negative friction. Pile tip located③mixed layer clay breccia layer is more favorable than the④layer of clay mixed with gravel layer.
     Secondly, the introduction of the British origin of nuclear magnetic resonance, and the research of matching refrigeration equipment, used to simulate the low temperature; under the ice melting, solid ice, bound water, liquid water can attenuate at different rates and have different relaxation time; determination of unfrozen water content of frozen soil with the NMR. It solves that problem of the difficulty and poor accuracy of the detection of the unfrozen water content; It also obtained unfrozen water content influence law by test analysis of the temperature of the frozen soil.
引文
1周幼吾,郭东信,邱国庆.中国冻土.科学出版社. 2000:161~394
    2崔托维奇.H.A..冻土力学.科学出版社. 1985.1:19~41
    3刘鸿绪,朱元林.中国寒区建筑基础设计.自然科学进展. 1996.11:661~663
    4李萍.冻结缘和冻胀模型的研究现状与进展.冰川冻土. 2001.5: 5~13
    5郑秀清,樊贵胜,照升义.水分在季节性冻土中的运动.太原理工大学学报. 1998.1: 62~63
    6李伟强,雷玉萍,张秀梅,田魁祥.硬壳覆盖条件下土壤冻融期水盐运动规律研究.冰川冻土. 2001.9: 251~256
    7马巍,朱元林,徐学祖.冻土工程国家重点实验室回顾与展望.冰川冻土. 1998.9: 264~267
    8 Kunio Watanabe. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Regions Science and Technology. 2009:34~41
    9王国尚,金会军,林清.时域反射仪在寒区冻融土参数测试中的应用.冰川冻土, 1998 (1):89~92
    10周凌云,陈志雄,李卫民. TDR法测定土壤含水量的标定研究.土壤学报. 2003 (1):59~64
    11都洋,陈晓飞,马巍.用NMR法验证在冻土中TDR线的可靠性.冰川冻土,2004:793~795
    12 Tomasz Kozlowski. A comparehensive method of determinig the soil unfrozen water curves. Application of the term of convolution. Cold Regions Science and Technology. 2003:71~79
    13 [苏]Γ.Π.马祖罗夫.冻土物理力学性质.梁惠生,伍期建.煤炭工业出版社1980:20~60
    14СаведьевБ.А.Методъгизучениямерзльгхпородильдов.СССР.Недра. 1985:5~6
    15徐学祖,王家澄,张立新.冻土物理学.科学出版社. 2001.4:6~12
    16徐学祖,土体冻胀和盐胀机理.北京科学出版社. 1995:22~26
    17温智,盛煜,马巍,邓友生,吴基春.青藏高原北麓河地区原状多年冻土导热系数的试验研究.冰川冻土. 2005.4:182~186
    18李述训,程国栋,刘继民,林径芳.兰州黄土在冻融过程中水热运输试验研究.冰川冻土. 1996.4 :319~320
    19何平,程国栋,朱元林.土体冻结过程中热质迁移的研究进展.冰川冻土. 2001.3: 92~93
    20盛煜,福田正已,金学三,金村折.未冻水含量对废弃轮胎碎屑冻土超声波速度的影响.岩土工程学报. 2000.11:7~16
    21徐学祖.冻土中水分迁移的实验研究.北京科学出版社. 1991:5~12
    22 A.R.泰斯, J.L.奥利丰特朱元林, Y.纳卡诺, T.F.琼肯斯.用脉冲核磁共振法及物理解析试验测定的冻土中冰和未冻水之间的关系.冰川冻土. 1983.3: 100~120
    23王绍令,杨梅学,小池俊雄,赵林.时域反射仪在监测青藏高原活动层水分变化过程中的应用.冰川冻土. 2000.3: 1~78
    24徐学组, J.L.奥利丰特, A.R.泰斯土水势.未冻水含量和温度.冰川冻土. 1985.3:4~32
    25土工试验规程SL237-1999.中国水利水电出版社. 1999.12:6~52
    26土工试验规程SDS01-79.水利出版社. 1981:1~48
    27冻土工程地质勘察规范GB50324—2001.中国计划出版社. 2001.9:5~23
    28土工试验方法标准GB/T 50123-1999.中国计划出版社. 1999.6:10~14
    29徐春华,徐学燕.多年冻土区砼灌注桩竖向承载性能研究.哈尔滨工业大学博士论文. 2009.3:4~20
    30于琳琳,徐学燕.不同人工冻结条件下土的冻胀试验研究.哈尔滨工业大学博士论文. 2006.6:15~22
    31齐吉琳,马巍.冻土的力学性质及研究现状.岩土力学. 2010.1:Vol.31, 8~11
    32冷毅飞,张喜发.冻土未冻水室内综合试验研究.吉林大学博士论文. 2006.5:6~10
    33 Tomasz Kozlowski. A comparison method of determining the soil unfrozen water curves. Stages of the phase change process in frozen soil-water system. Cold Regions Science and Technology. 2003:81~92
    34 Ma Qinyong. Strength and wave velocity test on artificially frozen. Science and Engineering. 1998,12: 256~258
    35 Birch F. Elasticity of igneous rocks at high temperatures and pressures. Geol Sic Am Bull 1943:263~286
    36陈湘生.人工冻土瞬时无侧限抗压强度特征的试验研究.建井技术. 1991.6:32~33
    37 F. Gallavresi. Consideration on the choice among the different freezing methods and competitiveness of the system as compared to alternative solutions. International symposium on Ground Freezing. Beijing. 1991.6:153~156
    38张立新,徐学祖,张招祥,邓友生.冻土未冻水含量与压力关系的实验研究.冰川冻土. 1998:25~27
    39张照太,汪仁和.深土冻土力学性能试验研究及工程应用.冰川冻土. 2006.4:31~37
    40常小晓,马巍.试验条件对冻土力学指标的影响.冰川冻土. 1995:151~155
    41李海鹏,林传年.原状与重塑人工冻结粘土抗压强度特性对比试验研究.岩石力学与工程学报. 2003 (2):2861~2864
    42李洪升,杨海天,常成,孙秀堂.冻土抗压强度对应变速率敏感性分析.冰川冻土. 1995 (1):40~47
    43梁波,刘德仁,张贵生.青藏铁路冻土密度、含水量与融沉(冻胀)关系的试验研究.第二届全国岩土与工程学术大会论文集. 2001:357~362
    44李海鹏,林传年,张俊兵,朱元林.原状与重塑人工冻结粘土抗压强度特征对比试验研究.岩石力学与工程学报. 2003.10(2):2861~2864
    45崔托维奇.H.A.冻土试验室研究资料.地质出版社. 1959:20~30
    46肖海斌.人工冻土单轴抗压强度与温度和含水率的关系.地质工程世界. 2001:16~18
    47 Anderson.D.M., A.R.Tice. The unfrozen interfacial phase in frozen soil water systems. In Ecological Studies. New York, Springer-Verlag, 1973. Vol.4:107~124.
    48 Anderson.D.M., R.Pusch , E.Penner. Physical and thermal properties of frozen ground. In Geotechnical Engineering for Cold Regions(O.B.Andersland and D.M.Anderson, Eds.). New York. 1978:37-102.
    49 Bouyoucos,G.J. Classification and measurement of the different forms of water in the soil by means of the dilatometer method. Michigan Agricultural Experimental Station. 1917:68~72
    50 Kolaian,J.H., P.F.Low. Calorimetric determination of unfrozen water in montmorillonite pastes. Soil Science. 1963. Vol.95:376-383
    51 Lovell,C.W. Temperature effects on phase composition and strength of partially frozen soil. Highway Research Board Bulletin 1957:74-95
    52 Nakano,Y., A.Tice, J.Oliphant, T.Jenkins. Transport of water in frozen soil.∏.Effects of ice on the transport of water under isothermal conditions. Advances in Water Resources. 1982:5~10
    53 Nakano,Y., A.Tice, J.Oliphant, T.Jenkins. Transport of water in frozen soil.∏.Experimental determination of soil-water diffusivity under isothermal conditions. Advances in Water Resources, in press. 1982:25~30
    54 Anderson.D.M., Tice. A.R., Banin.A. The Water-Ice Composition of Clay/Water System. CRREL Research Report. 1974:10~15
    55 Tice.A.R., Burrous.C.M., Anderson.D.M.. Phase Composition Measurements on Soil at Very High Water Contents by the Pulsed Nuclear Magnetic Resonance Technique. Reprinted from Moisture and Frost-Related Soil Properties. Transportation Research Board. National Academy of Sciences. 1978:11-14
    56 Xu xiaozu, Oliphant.J.L., Tice.A.R.. Factors Affecting Water Migration in Frozen Soils. CRREL Report. 1987:87~96.
    57 Yearshov.A.D., Water Phase Composition of Frozen Soils. Moscow University Publishing House. 1979:189~191
    58 Kaliuzhuyi.I.L., N.S.Morozova, K.K.Pavlova. Determining Soil-Water Potentials of Low-Moisture Frozen Soils. Leningrad Gosudarstvenny gidrologicheskii Institute. 1980. Vol.264:11~18
    59 Williams,P.J., E.Perfect. Investigation of Rates of Water Movement through Frozen Soils. Final Report for Dept. Energy, Mines and Resources. Ottawa. 1979:36~39
    60 Takeda K. Okamura A. Microstructure of freezing front in freeing soil. Ground Freezing 97. Netherland. Lulea University of Technology.1997:264~272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700