用户名: 密码: 验证码:
五自由度气浮仿真试验台位置和姿态控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的不断发展,航天器将具有更高的姿态指向精度和跟踪控制能力,逐步向着智能化、敏捷化和多功能化的方向发展。先进技术的应用在确保航天器完成各种在轨服务的同时,也使航天器的发射和控制成为一种高风险高投入的任务,降低风险的一个有效途径就是对整个系统进行充分的地面试验验证。本文研究的五自由度气浮仿真试验系统能够在地面上复现太空中微重力、低摩擦的动力学环境,模拟航天器的轨道和姿态运动,可以将航天器的软硬件引入控制回路,有效的完成地面仿真验证。
     本文首先介绍了五自由度气浮仿真试验台的结构,分别阐述了气浮台各个功能单元的组成和工作原理;在Pro/ENGINEER环境下建立了气浮台的精确模型,进行了虚拟质心调节,为实际调平衡工作提供了可靠的依据,同时对模型进行了质量分析,计算出姿态控制的关键参数——惯量矩阵。根据刚体运动学和动力学的相关知识,建立了基于冷气—飞轮控制的气浮台位置和姿态模型,并对气浮台所受干扰力矩进行了简要分析,为后续位姿控制系统的设计提供了理论依据。
     结合气浮台位姿动力学模型,推导出位置和姿态的控制方程,分析了控制特性;针对冷气推进和飞轮两种执行机构各自的特点,分别采用改进滑模变结构控制和PID控制进行了控制器的设计,并进行了仿真验证。
     在现有的基于冷气推进的五自由度气浮台上进行了控制算法的验证,证明了五自由度气浮台能够完成相应的位置和姿态运动。
Along with the development of the aerospace technology, the spacecrafts are expected to have higher attitude pointing accuracy and greater trajectory ability, and are expected to be more intelligent and agile while also being multifunctional. The application of advanced technologies not only ensure that the on-orbit-servicing spacecraft can finish the tasks, but also make the launching and controlling of a spacecraft to be a high-cost, high-risk venture. An effective way of reducing risk is that every parts of the system must be verified in the ground-base test-beds. The five degrees-of-freedom air bearing spacecraft simulator can create a micro-gravity and low-friction dynamic environment and simulate the motion of orbit and attitude. It can access directly circuit by hardware and software accomplishing the verification testing on the ground.
     This paper introduced the structure of the 5-DOF air bearing spacecraft simulator and work principle and component of every units. The precise model of the air bearing simulator was established in the Pro/ENGINEER environment.
     Accomplish the virtual centroid adjustment which can provide the basis for the actual centroid adjustment. Analysis the quality attribute of the simulator and calculate the inertia matrix which is the key parameter of attitude control system. Derive the math model of position and attitude of the simulator in which the actuators are air propulsion device and reaction wheel using equations of rigid body kinematics and dynamics. Analysis the disturbing forces and torques.
     Derive the controlling equations of the simulator’s position and attitude on the base of the math model which describe the dynamics of position and attitude. Design different controllers for the two kinds of actuators respectively based on the different control strategies Sliding Mode Variable Structure Control and PID.
     Verify Sliding Mode Variable Structure Control strategy using the 5-DOF air bearing simulator based on air propulsion. The results show that the 5-DOF air bearing simulator can be controlled accurately and effectively.
引文
1鲁兴举.空间飞行器姿态控制仿真试验平台系统研究与设计.国防科学技术大学硕士,2005.
    2王明远,刘长柱.二十一世纪初期航天技术发展趋势.空间电子技术, 2001(3):57-60.
    3张新邦,林来兴,索旭华.卫星控制系统仿真技术.计算机仿真, 2000(2):57-59.
    4李季苏,牟小刚,孙维德,等.大型卫星三轴气浮台全物理仿真系统.控制工程. 2001, 3: 22~26.
    5李季苏,牟小刚,张锦江.气浮台在卫星控制系统仿真中的应用.航天控制. 2008, 26(5): 64~69.
    6林来兴.卫星控制系统仿真——优化设计,方案验证,产品检验,故障模拟和动态实验的主要手段.航天控制, 1983(3):69-79.
    7 Ledebuhr A. G.“Down-to-Earth Testing of Microsatellites,”Lawrence Livermore National Lab Science&Technology Review, 1998.
    8 A G. Ledebuhr M. S. Jones. Micro-satellite ground test vehicle for proximity and docking operations development. Lawrence Livermore National Laboratory, 1999.
    9 Schwartz Jana L. The Distributed Spacecraft Attitude Control System Simulator-From Design Concept to Decentralized Control. Virginia Polytechnic Institute and State UniversityDoctor,2004.
    10 Turner Andrew J. An Open-Source, Extensible Spacecraft Simulation And Modeling Environment Framework. Virginia Polytechnic Institute and State UniversityMaster,2003: 137.
    11 Schwartz Jana L., Hall Christopher D. The distributed spacecraft attitude control system simulator: development, progress, plans: 2003 Flight Mechanics Symposium, NASA Goddard Space Flight Center, 2007. NASA.
    12 Schwartz Jana L., Peck Mason A., Hall Christopher D. Historical review of spacecraft simulator. Advances in the Astronautical Sciences, 2003,114:405-423.
    13 D. P. Scharf, J. A. Keim, F. Y. Hadaegh. Flight-like ground demonstrations of precision maneuvers for spacecraft formations - Part I. IEEE Systems Journal, 2010,4(1):84-95.
    14 M. W. Regehr, A. B. Acikmese, A. Ahmed, et al. The formation controltestbed: IEEE Aerospace Conference Proceedings. Big Sky, MT, United states: 2004557-563.
    15 G. A. Sohl, S. Udomkesmalee, J. L. Kellogg. Distributed simulation for formation flying applications: Collection of Technical Papers - AIAA Modeling and Simulation Technologies Conference 2005. San Francisco, CA, United states: 20051162-1173.
    16 D. P. Scharf, F. Y. Hadaegh, J. A. Keim, et al. Flight-like ground demonstration of precision formation flying spacecraft: Proceedings of SPIE - The International Society for Optical Engineering. San Diego, CA, United states: 2007TheInternationalSocietyforOpticalEngineering(SPIE).
    17 J. Shields, H. Goldberg, J. Kiem, et al. Terrestrial attitude estimation for the formation control testbed (FCT): IEEE Aerospace Conference Proceedings. Big Sky, MT, United states: 2007IEEE;AIAA.
    18 F. Yang, K. Wang, Z. Qian. A chain structure Bluetooth scatternet topology formation algorithm and simulations: GLOBECOM - IEEE Global Telecommunications Conference. St. Louis, MO, United states: 2005479-483.
    19 Lawson P. R., Ahmed A., Gappinger R. O.,等. Terrestrial Planet Finder Interferometer technology status and plans: Advances in Stellar Interferometry, Orlando, FL, United States, 2006. SPIE.
    20 Shields Joel, Bailey Richard, Lytle Brent,等. System design, modelling, and tracking filter for bearings only analog camera: 2005 American Control Conference, Portland, OR, United States, 2005. IEEE.
    21李季苏,牟小刚,张锦江.卫星控制系统全物理仿真.航天控制, 2004(2):37-41.
    22张锦江,牟小刚,李季苏,等.大型航天器SGCMG系统全物理仿真实验研究.中国大连: 2001.
    23 Yang Yong Cao Xibin. Design and Development of the Small Satellite Attitude Control System Simulator. AIAA Modeling and Simulation Conference, 2006.
    24刘智平,周凤岐,周军.具有参数不确定性的飞行器的变结构姿态控制.宇航学报, 2007(1):43-48.
    25韩艳铧,周凤岐,周军.基于反馈线性化和变结构控制的飞行器姿态控制系统设计.宇航学报, 2004(06):637-641.
    26华莹.空间飞行器大角度机动控制律设计.宇航学报, 2006(6):1223-1227.
    27 IKEDAT TANAKAK. Fuzzy regulators and fuzzy observers:relaxed stability conditions and LMI-based designs . IEEE Trans on Fuzzy Systems, 1998,6(2):250-265.
    28 F. Gouaisbaut, W. Perruquetti, P Richard J. A sliding mode control for linear systems with input and state delays: Proceedings of the 38th IEEE Conference on Decision and Control, 1999.
    29 S Lewis A. Robust Output Feedback Using Sliding Mode Control. Journal of Guidance. Control, and Dynamics, 2001,24(5):873-878.
    30 Shuster M. D. A survey of attitude representation. J.of Astronautical Sciences, 1993,43:439-514.
    31 Utkin V. I. Variable structure control systems with sliding mode. IEEE Transactions on Automatic Control, 1977,22.
    32 S Oucheriah. Dynamic compensation of uncertain time-delay systems using variable structure approch. IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications, 1995,42(8):466-470.
    33 Fang Y., Chow T. W. S., Li X. D. Use of a recurrent neural network in discrete sliding mode control. IEEProc.Control Theory Appl., 1999,146(1):84-90.
    34 Hu J B., J Chu. A new VSC design method based on LMI. IMC, Beijing, 1999.
    35 Et Man Z. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans.On.Auto.Contr, 1994,39:2464-2469.
    36刘良栋.卫星控制系统仿真技术.宇航出版社, 2003:37-45.
    37潘旺华.基于多传感器信息融合的卫星姿态确定技术研究.国防科学技术大学硕士,2004.
    38许剑,杨庆俊,包钢,等.五自由度气浮台姿态的计算机视觉辅助确定.四川大学学报(工程科学版), 2009(4):220-226.
    39屠善澄.卫星姿态动力学与控制.宇航出版社, 2001:426-427.
    40于翠.飞轮控制系统的设计与实现.哈尔滨工业大学硕士,2006.
    41许剑,任迪,杨庆俊,等.五自由度气浮仿真试验台气动回路设计.液压与气动, 2009(9):11-13.
    42吕建婷.三轴稳定卫星姿态控制算法研究.哈尔滨工业大学博士,2007.
    43程少华.深空探测器姿态控制方法研究.哈尔滨工业大学硕士,2006.
    44杨其林,许剑,杨庆俊,等.气浮台冷气推力测试装置的系统设计.机床与液压, 2009(9):82-85.
    45高为炳.变结构控制的理论及设计方法.科学出版社, 199610-20.
    46张万凌.一类非线性系统的变结构控制.哈尔滨工业大学,2006.
    47胡跃明.变结构控制理论与应用.科学出版社, 2003.
    48金磊,徐世杰.基于变惯量反作用飞轮的小卫星大角度姿态机动控制研究.宇航学报, 2007(3):566-570.
    49 Woffinden David C., David K. Geller. Navigating the Road to Autonomous Or-bital Rendezvous. Journal of Spacecraft and Rockets, 2007,44(4):898-909.
    50 Guglieri G., Quagliotti F. Analysis of Automated Rendezvous and Docking Op-erations. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hono-lulu, 2008.
    51方艺.基于PC104总线的六自由度平台控制系统的研究.西南交通大学硕士,2003.
    52何勇.基于PC/104的嵌入式运动控制系统的研究.四川大学硕士,2005.
    53陈智育,温彦军,陈琪. VxWorks程序开发实践//人民邮电出版社, 2004.
    54杨扬,王刚,李正熙. VxWorks系统的映像及其装载过程解析.工业控制计算机, 2007,20(4):50-51.
    55宜万兵,秦红磊,路辉.基于LabVIEW RT的实时采集系统.电子测量与仪器学报, 2007,增刊:511-514.
    56李光亚.基于LabVIEW的模拟实验数据采集与处理系统开发. 2008(01):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700