用户名: 密码: 验证码:
杭嘉湖平原稻田不同施氮水平下氮素利用效率及环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是浙江省杭嘉湖地区主栽作物之一。近几年,随着测土配方施肥等技术的推广和应用,单位耕地面积化肥施用量有所降低,但农民为了追求高产过量施用氮肥的现象仍普遍存在。氮肥的大量施用带来了诸多弊端,如氮肥利用率降低,施肥经济效益下降,农田土壤氮素流失加剧了水体的富营养化过程,氮素向地下渗漏造成地下水硝酸盐污染等,对生态环境造成威胁。研究以经济效益和环境效益综合评估为基础的推荐施肥技术体系,对于提高肥料利用效率、减少肥料损失,降低施肥对环境的负面影响具有十分重要的意义。为此,本研究选择位于杭嘉湖平原的农业部杭州水稻土生态环境重点野外科学观测试验站(海宁杨渡镇)的滨海淡涂泥田土壤,以杂交粳稻浙优12为材料,进行大田定位试验,采用~(15)N同位素示踪等方法研究不同施氮水平对水稻生长和养分吸收、氮在土壤中的迁移与转化及氮素利用效率的影响,筛选以水稻产量、施肥经济效益与环境效应综合评估为基础的最佳氮肥推荐用量,评价不同施氮水平的环境生态效应,以期为该地区科学施肥提供科学依据。主要研究结果如下:
     1、杂交粳稻浙优12水稻株高、分蘖数及水稻植株含氮率随着施氮量增加而增加,杂交粳稻浙优12在杭嘉湖地区移栽后第35天分蘖数达到最高,当土壤中的铵态氮浓度低于15mg·kg~(-1)时分蘖受到抑制。在0~210kg·hm~(-2)施氮量内,水稻干物质积累量随施氮量增加而增加,施氮量超过210kg·hm~(-2)时水稻干物质出现下降趋势。施氮量在0~270kgN·hm~(-2)之间,水稻各生育期氮、磷、钾积累量均随着施氮量增加而增加,拔节期至抽穗期水稻植株吸氮量最大。在施氮量150kgN·hm~(-2)条件下增施有机肥促进水稻对氮磷钾的吸收。水稻产量与水稻全生育期氮、磷、钾的积累量具有显著正相关关系,以水稻产量与氮素积累量相关系数最大。
     2、施氮量在0~330kgN·hm~(-2)之间,随着施氮量增加,水稻吸收单位面积养分生产的稻谷产量(养分内部利用率)降低,增施有机肥能提高养分内部利用率。氮素生理利用率(PNUE)和氮素吸收利用率(NRE)以210kgN·hm~(-2)的施氮水平最高,分别比无氮肥区提高了34.1g·g~(-1)和58.6%。当施氮量高于210kgN·hm~(-2)时,氮肥生理利用率和氮素吸收利用率随施氮量的增加而降低。同时利用~(15)N同位素示踪法证实,施氮量为150kgN·hm~(-2)下结合适量施用有机肥,有助于提高水稻的氮肥生理利用效率和氮肥吸收利用率,从而可以减少氮肥用量和降低环境污染。
     3、施氮量在0~210kgN·hm~(-2)之间,杂交粳稻浙优12水稻产量随着施氮量的增加而增加,210kgN·hm~(-2)增产率最高,比无氮肥处理增产54.4%(2008年)和54.91%(2009年),施氮量增加主要是提高水稻的每穗粒数和有效穗数,对提高水稻千粒重和结实率的影响较小。在施化学氮肥0~150kgN·hm~(-2)范围内,增施有机肥对于增产起到了重要作用。应用环境经济学的Coase原理,根据2008~2009两年的大田试验结果,综合分析施氮量对水稻边际产量和氮素边际损失量的影响,提出杂交粳稻浙优12在杭嘉湖平原淡涂泥土壤最佳经济施氮量为219.9~234.8kg·hm~(-2),相应的水稻产量为9116.7~9796.4kg·hm~(-2);兼顾水稻产量、环境效益的合理施氮量为217.3~240.1kg·hm~(-2),相应的生态适宜产量为9119.8~9801.9kg·hm~(-2)。
     4、水稻移栽后28天内,不同时期测得的稻田田面水中的NH_4~+-N、NO_3~--N浓度随施氮量的增加而增加,其高峰值的出现与施肥时间有关;耕作层土壤中NH_4~+-N、NO_3~--N浓度的变化规律与田面水中基本一致。稻田径流水中的NH_4~+-N、NO_3~--N浓度均随着施氮量的增加而增加,与稻田田面水及耕层土壤中NH_4~+-N、NO_3~--N浓度变化具有高度一致性,表明过量施氮对水环境污染存在很大的风险。土壤渗漏水中NH_4~+-N及NO_3~--N浓度较径流水中相应的氮素浓度低,其浓度变化与氮素用量有关,但其随施氮量变化的幅度较小,不及径流水中明显。施氮量大于270kgN·hm-2时稻田渗漏水中NH_4~+-N浓度已超过地下水质量标准的IV级(铵态氮为0.5mg·L-1)规定范围。氨挥发速率具有随施氮量的增加而增加的趋势,基肥后的氨挥发速率最快,累计氨挥发总量最高,与稻田田面水及耕作层土壤中NH_4~+-N浓度变化有很大的一致性。但各施氮处理间累计氨挥发总量差异不明显。
Rice is one of the main cultivated crops in Hangjiahu plain of Zhejiang Province. In the past few years, the amount of fertilizer used in unit land area decreased with the promotion and application of formula fertilization by soil testing.But the farmers in pursuit of high-yield excessive application of nitrogen fertilizer remains widespread. Large number of nitrogen fertilizer brought about many disadvantages, such as reduced nitrogen use efficiency, declined fertilizer economic value, intensified the process of eutrophication, resulted in nitrate pollution to ground-water and posed a threat to ecological environment. The study of recommended fertilization system based on comprehensive assessment has significance on improving fertilizer use efficiency, reducing the negative effects of fertilization on environment. This study is located in Hangjiahu Plain in Hangzhou, the Ministry of Agriculture focus on the ecological environment of rice field soil scientific monitoring station (Haining Yangdu Town) in the coastal mud field light coating of soil. The purpose of this research is, chosing hybrid rice Zheyou 12 as materials for field localization test, using ~(15)N isotope tracer studies and other methods of nitrogen application, to study rice growth and nutrient uptake, nitrogen migration and transformation in the soil and nitrogen use efficiency, filter optimal amount of nitrogen fertilizer recommendation based on rice yield, economic and environmental effects of fertilizer integrated assessment, evaluate ecological effects under different N levels, and provide scientific basis for scientific fertilization to Hangjiahu plain region . The major findings are as follows:
     1、The plant height, tiller number and nitrogen rate of hybrid rice Zheyou 12 increased with the rise of nitrogen, the number of tillers reached largest level after transplanting 35 days in Hangjiahu plain, the tillering was inhibited when ammonium concentrations in soil less than 15mg·kg~(-1.) The dry matter accumulation increased with the nitrogen applied level increasing at the range of 0~210kg·hm~(-2) nitrogen and trend to decline when nitrogen applied amoumt over 210kg·hm~(-2.) Nitrogen applied level under the range of 0~270kgN·hm~(-2),the content of nitrogen, phosphorus and potassium increased with the rise of nitrogen, rice nitrogen, phosphorus and potassium accumulation decreased with increased nitrogen, nitrogen uptake reached largest in jointing to heading positive correlation between rice grain yield and nitrogen, phosphorus and potassium accumulation in whole growth. And the correlation coefficient was significant maximum about grain yield and nitrogen accumulation between rice grain yield and N accumulation.
     2、When nitrogen fertilizer appilied level between 0~330kgN·hm~(-2), rice production output by absorption of per unit weight nutrients (internal nutrient use efficiency) is decreased within nitrogen increased, internal nutrient use efficiency is increase with the organic manure. The highest nitrogen use efficiency (PNUE) and nitrogen uptake efficiency (NRE) is in 210kg·hm-2 of nitrogen treatment, which compared with nitrogen-free zone were increased 34.1g·g~(-1) and 58.6%. When the nitrogen fertilizer more than 210kgN·hm~(-2), the nitrogen use efficiency and nitrogen uptake efficiency decreases with the amount of nitrogen increases. This also confirmed by using ~(15)N isotope tracer method. Combined with appropriate organic fertilizer in 150kgN·hm~(-2) treatment will improve rice nitrogen use efficiency (PNUE) and nitrogen uptake efficiency (NRE), and reduce nitrogen consumption and environmental pollution.
     3、When nitrogen fertilizer applied level between 0~210kgN·hm~(-2), the yield of hybridization rice of Zheyou 12 increases with nitrogen fertilizer increasing. The highest yield rate is 210kgN·hm~(-2) treatment, which increased 54.4% (2008) and 54.91% (2009) compared with nitrogen-free zone. Nitrogen fertilizer increased is mainly to improve the number of rice grains per panicle and panicles of rice grain, and has little effect in improving the weight of 1000-seed and seed rate. When chemical nitrogen fertilizer application at the range of 0~150kgN·hm~(-2), increasing organic manure applied level played an important role for improving rice production. Application of Coase principles from environmental economics, according to 2008 and 2009 two years’field test results, comprehensive analysis of nitrogen application rate on the marginal production and marginal loss of nitrogen, proposed the hybridization rice of Zheyou 12 in Hangjiahu plain desalting mud polder’s economic nitrogen is 219.9~234.8kg·hm~(-2), corresponding rice yield is 9116.7~9796.4kg·hm~(-2), concern both rice production and environmental benefits of a reasonable amount of nitrogen is 217.3~240.1kg·hm~(-2), the corresponding ecological suitable for production of 9119.8~ 9801.9kg·hm~(-2.)
     4、In the 28 days after transplanting, NH_4~+-N、NO_3~--N concentrations in paddy field surface water increased with the raise of nitrogen applied in different periods,and the appear of peak value was related to fertilization time.The change of NH_4~+-N、NO_3~--N concentration in farming layer soil was consistent with surface water. NH_4~+-N、NO_3~--N concentration in runoff water increased with nitrogen applied increasing, and has a great consistency between the concentration in surface water and farming layer soil. It means excessive nitrogen applied has great risk on water pollution. NH_4~+-N and NO_3~--N concentration in soil seepage water is lower than corresponding nitrogen concentration in runoff water, the concentration change was relate to nitrogen concentrantion,but the change is slighter than runoff water. NH_4~+-N concentration in soil seepage water was beyond the ground water quality standards (ammonium nitrogen was 0.5mg·L-1) when nitrogen applied level was over 270kgN·hm-2. Ammonia volatilization rate increased with the nitrogen applied level increasing, reached fastest level after the base fertiliaer applied, and the cumulative ammonia volatilization loss come to largest at the same time, has a great consistency to NH_4~+-N concentration change in surface water and farming layer soil.The cumulative ammonia volatilization has no significant difference among different nitrogen applied treatments.
引文
[1] Roland Buresh, Christian Witt. Challenge and opportunity in improving fertilizer–nitrogen use efficiency of irrigated rice in China[J]. Agricultural Sciences in China, 2002,1(7):776﹣785.
    [2]张达,林杉.通气状况与氮素形态对水稻和早稻生长的影响[J].哈尔滨师范大学自然科学学报,2002,18(4):97﹣102.
    [3]史瑞和.植物营养原理[M].江苏:江苏科学技术出版社,1989.
    [4] Jean-Francois Morot-Gaudry. Nitrogen Assimilation by Plants[M]. Science Publishers, Inc. (USA).2001.
    [5]王小兵,吴平.硝态氮(NO3-)对水稻侧根生长及其氮吸收的影响[J].植物学报,2002,44(6):678﹣683.
    [6]李海波,王小兵.不同氮、磷状况对水稻根生长及细胞周期蛋白激酶(CDKs)基因表达的影响[J].植物生理与分子生物学学报,2002,28(l):59﹣64.
    [7]孙向阳.土壤学[M].北京:中国林业出版社,2005.
    [8]吕殿青,张树兰,杨学云.外加碳、氮对土壤氮矿化、固定与激发效应的影响[J].植物营养与肥料学报,2007,13(2):223﹣229.
    [9]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004,27(2):130﹣135.
    [10] Vlek PLG, Byrnes BH. The efficiency and loss of fertilizer N in lowland rice[J]. Fertilize Reseach, 2000,9:131﹣147.
    [11]赵洪涛,周健民,范晓晖,等.太湖地区主要土壤上水稻氮素吸收利用的研究[J].土壤,2006,38(2):153﹣157.
    [12]李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究[J].农村生态环境,2000,16(3):19﹣22.
    [13]董桂春.不同氮素籽粒生产效率类型籼稻品种的基本特点.扬州大学博士学位论文,2007.
    [14]吴章荣,俞震豫.浙江土壤[M].杭州:浙江科学技术出版社,1994.
    [15]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的策略[J].中国农业科学,2002,35:1095﹣1103.
    [16]朱兆良.氮素管理与粮食生产和环境[J].土壤学报,2002,39(增刊):1﹣11.
    [17]刘立军,徐伟,桑大志,等.实地氮肥管理提高水稻氮肥利用效率[J].作物学报,2006,32(7):987﹣994.
    [18] Ngkee Kwong, Bholah KF. Nitrogen and phosphorus transport by surface from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius[J]. Agriculture, Ecosystems and Environment, 2002, 91: 147﹣157.
    [19]汪华.不同氮素用量对高肥力稻田土壤-水稻-水体氮素变化及环境影响分析[J].水土保持学报,2006,20(1):50﹣54.
    [20]李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,34(1):67﹣72.
    [21]朱兆良,李晓凤,丁克坚,等.氮素营养对水稻纹枯病的影响[J].安徽农业科学,2002,16(3):16﹣23.
    [22]李庆遥.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社,1997.
    [23]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240﹣244.
    [24]李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省[D].北京:中国农业大学,2000.
    [25]武志杰.我国化肥生产应用中的问题及对策[J].科技导报,1997,9:37﹣39.
    [26]罗志祥,苏泽胜,施伏芝,等.氮肥高效利用水稻育种的现状与展望[J].中国农学通报,2003,19(1):65﹣67.
    [27]李春剑.土壤与植物营养研究新动态(第四卷) [M].北京:中国农业大学出版社,2001,12﹣23.
    [28]谢建昌.世界肥料使用的现状与前景[J].植物营养与肥料学报,1998,4(4):321﹣330.
    [29]曾宪坤.我国化肥市场探析[J].化肥工业,1999,25(5):3﹣7.
    [30]中国农业科学院土壤肥料研究所.中国肥料[M].上海:上海科学技术出版社,1994.
    [31]范小建.切实加强有机肥料建设、努力提高农业综合生产能力[N].农民日报:2005﹣06﹣21.
    [32]吴东雷,陈声明.农业生态环境保护[M].北京:化学工业出版社,2002:21.
    [33]黄鸿翔,李书田,李向林,等.我国有机肥的现状与发展前景分析[J].土壤肥料,2006,(1):3﹣8.
    [34]张庆忠,陈欣,沈善敏.农田土壤硝酸盐累积与淋失研究进展[J].应用生态学报,2002,35:1095﹣1103.
    [35]廖海秋,施卫明,严蔚东,等.有机无机肥料配施对潜育性水稻土肥力的影响[J].土壤通报,1998,29(6):248﹣249.
    [36]张本元.有机无机肥配施对小麦、水稻产量的影响[J].安徽农学通报,2001,7(6):53﹣54.
    [37]高菊生,秦道珠,刘更另,等.长期施用有机肥对水稻生长发育及产量的影响[J].耕作与栽培,2002,(2):31﹣33.
    [38]纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(12):2521﹣2530.
    [39] Shen S-M. Contribution of nitrogen fertilizer to the development of agriculture and its loss in China [J].Acta pedol sin ,2002 ,39:12﹣25. (in China).
    [40]朱兆良.中国土壤氮素[M].南京:江苏出版社,1992,213﹣249.
    [41]尹娟,勉韶平.稻田中氮肥损失途径研究进展[J],农业科学研究,2005,26(2):76﹣80.
    [42]朱兆良.农田氮肥的损失与对策[J].土壤与环境,2000,9(1):1﹣6.
    [43]苏成国,尹斌,朱兆良.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884﹣1888.
    [44]蔡贵信.中国土壤氮素[M].南京:江苏科技出版社,1992.
    [45]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,(9):15﹣17.
    [46]张国梁,章申.农田氮素的研究进展[J].土壤,1998,(6):291﹣297.
    [47]鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究[J].土壤通报,1996,27(4):45﹣51.
    [48] Wang J Y,Wang S L ,Chen Y. Study on leaching loss of nitrogen in rice fields by using large undisturbed monolith lysimeters[J]. PedospHere, 1994,4:87﹣92.
    [49]陈刚才.土壤氮素及其环境效应[J].地质地球科学.2001,29(l):63一68.
    [50]张炎,史军辉,李磐,等.农田土壤氮素损失与环境污染[J].新疆农业科学,2004,4(4):57﹣60.
    [51]朱兆良,孙波,杨林章.我国农业面源污染的控制政策和措施[J].农业科技导报,2005,3(4):47﹣51.
    [52]李远,王晓霞.我国农业面源污染的环境管理:背景及演变[J].环境保护,2005,(4):23﹣27.
    [53]李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程[J].西北农业大学学报,1999,27(1):1﹣5.
    [54]张维理,田哲旭.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80﹣87.
    [55] ICPP(Intergovernmental Panel on Climate Change).Climate Change 1995.The Science of Climate Change[M]. New York: Cambridge University Press, 1996.
    [56]张维理,林葆.西欧发达国家提高化肥利用率的途径[J].土壤肥料,1998,(5):3﹣9.
    [57]熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农业生态环境,2002,18(2):29﹣33.
    [58]刘敏超.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究,2000,(5):309﹣312.
    [59]林葆,金继运.肥料在发展中国家粮食生产中的作用—历史的回顾与展望.中国平衡施肥报告会[C].北京:加拿大钾肥公司,1991,35﹣42.
    [60]朱兆良.氮肥分次施用对肥料效果影响的研究[J].土壤肥料,1984,(3):29﹣32.
    [61]王永锐.水稻营养和合理施肥[M].南京:科学出版社,1989.
    [62]许秀成.包膜(包裹)型控制释放肥料各国研究进展[J].磷肥与复肥,2001,16(4):4﹣8.
    [63] Tremkel M E. Improving fertilizer use efficiency-controlled-release and stabilized fertilizers in agriculture[M]. Paris: International Fertilizer Industry Association (IFA), 1997.
    [64]郑圣先,聂军,熊金英,等.控释肥料提高氮素利用率的作用及对水稻效应的研究[J].植物营养与肥料学报,2001,7(1):11﹣16.
    [65]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [66]温贤芳,郭志芬,陈良.稳定同位素15N在我国农业研究中的应用进展[J].同位素,1991,4(4):60﹣64.
    [67]殷晓燕,徐阳春,沈其荣,等.直播旱作和水作水稻的氮素吸收利用特征研究[J].土壤学报,2004,41(6):983﹣986.
    [68]潘圣刚,曹凑贵,蔡明历,等.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响[J].植物营养与肥料学报,2009,15(2):283﹣289.
    [69] Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crops Research, 1999, 63:113﹣138.
    [70]胡泓,王光火.金华长期定位试验中杂交水稻的钾素营养特征研究[J].浙江大学学报,2003,29(3):257﹣260.
    [71] Song Y S, Fan X H. Nitrogen up take and its utilization by rice in paddy field of Taihu area[J]. Chinese Journal of Applied Ecology, 2003 , 14(11): 2081﹣2083.
    [72] Gao J H, Huang D M, Zhu P L. Discussion on the absorp tion and utilization organic and inorganic fertilizer nitrogen and soil nitrogen by rice[J]. Acata Pedologica Sinica, 1983, 20(1): 1﹣11.
    [73]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51﹣56.
    [74]张娟,沈其荣,张亚丽,等.施用预处理秸秆的土壤供氮特征及冬小麦吸收的影响[J].植物营养与肥料学报,2004,10(1):24﹣28.
    [75]徐明岗,邹长明,秦道珠,等.有机无机肥配合施用下的稻田氮素转化与利用[J].土壤学报,2002,39(增刊):147-156.
    [76]宇万太,马强,周桦,等.不同施肥模式对下辽河平原水稻生态系统生产力及养分收支的影响[J].生态学杂志,2007,26(9):1350-1354.
    [77]郑兰君,曾广永,王鹏飞.有机肥、化肥长期配合施用对水稻产量及土壤养分的影响[J].中国农学通报,2001,17(3):48-50.
    [78]Xiao Qiang, Zhang Wei li,Wang Qiu bing, et al. Nitrogen losses under simulated rainfall conditions in rice wheat rotation of Taihu lake watershed plain[J]. Plant Nutrition and Fertilizer Science ,2005 ,11(6):731﹣736. (in Chinese)
    [79] Li R G, Cui Y T, Cheng X. The nitrogen fertilizer using on rice and the continuable development of the environment in TaiLake Watershed[J]. Culture with Planting, 1999, (4): 49﹣63.
    [80]王米,杨京平,徐伟,等.分次施氮对单季稻氮素利用率及生态经济适宜施氮量的影响[J].浙江大学学报(农业与生命科学版),2009,35(1):71﹣76.
    [81]杨生茂,李凤民,索东让,等.长期施肥对绿洲农田土壤生产力及土壤硝态氮积累的影响[J].中国农业科学,2005,38(10):2043﹣2052.
    [82]周卫军,王凯荣,张光远,等.有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响[J].中国农业科学,2002,35(9):1109﹣1113.
    [83]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659﹣662.
    [84]黄进宝,范晓晖,张绍林,等.太湖地区黄泥土壤水稻氮素利用与经济生态适宜施氮量[J].生态学报,2007,27(2):588﹣595.
    [85] Stevenaon F J. Cycles of soil Carbon, Nitrogen, Phosphorous, Sulfur, Micronutrients[M]. NewYork:WilleyandSons.1986,106﹣154.
    [86]王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定:通气法[J].植物营养与肥料学报,2002,8(2):205﹣209.
    [87]水和废水分析方法编委会,国家环境保护总局.水和水监测分析方法(四)[M].北京:中国环境科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700