用户名: 密码: 验证码:
西藏特提斯白垩纪古生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪是地球演化的重大突变期,地球表部层圈和岩石圈构造均发生了重大的改变。全球性一致变暖,海平面上升,火山、构造活动、超级地幔柱、富有机碳沉积,大洋缺氧事件及生物集群绝灭事件等一系列地质事件。青藏高原地处亚洲大陆南部,是全球著名的巨型东西向特提斯—喜马拉雅构造域的主体之一。其独特而复杂的地壳结构吸引全世界地学工作者的关注和探索。
     本次研究通过对西藏南部地区白垩纪微体化石古生态资料、化石碳酸盐岩微相、生物相、遗迹相及相关沉积构造特征的综合研究,对特提斯喜马拉雅(东特提斯)白垩纪沉积环境及其演变过程进行了较为深入的探讨。论文所得出的主要结论或认识如下:
     1.在西藏南部海相白垩纪沉积中识别出16种化石碳酸盐岩微相(MF1~MF16)、13种生物相(BF1~BF13)、5种遗迹相(Nereites,Zoophycos,Cruziana,Glossifungites和Skolithos遗迹相)。
     2.在白垩纪时期,特提斯喜马拉雅总体呈现为“北深南浅”的古地理格局:特提斯喜马拉雅南亚带(岗巴-定日-札达一线)总体为水体相对较浅的大陆架环境,很少见代表深海盆地沉积环境的放射虫及箭石等化石门类,亦未见代表大洋沉积环境的白垩纪大洋红层(CORBs)的出露;而特提斯喜马拉雅北亚带(康马-江孜-赛区一线)总体为水体相对较深的大陆斜坡-大洋盆地环境,代表深海盆地沉积环境的放射虫及箭石等化石门类及大洋红层极为发育。
     3.在白垩纪时期,与特提斯洋的演化过程相一致,特提斯喜马拉雅地区发生了一次明显的海水进退旋回:(1)早白垩世Berriasia-Barrem期,东特提斯地区发生海侵,岗巴-定日一带总体上为前三角洲和河口砂坝沉积环境,以发育一套浅海相灰色火山岩屑杂砂岩夹页岩沉积为特征;(2)Aptian期海侵规模加大,海水急剧加深,岗巴-定日一带成为一种深水外陆棚环境,以发育一套滞留缺氧的高有机质含量的黑色页岩沉积为特征;(3)Albian早期发生海退,岗巴-定日一带总体上为近岸扰动带沉积环境,大量出现以Textularia sp.为主要代表的胶结壳类型的有孔虫;(4)Albian晚期发生海进,水体较Albian早期加深,岗巴-定日一带成为正常浪基面和风暴浪基面之间的碳酸盐台地斜坡环境或开阔海外陆架至陆架边缘沉积环境,发育一套深灰色—黄绿色页岩夹灰黑色钙质粉砂岩、杂砂岩沉积,本时期发育丝状体相(早期)、菊石相(中期)与浮游有孔虫(晚期)等生物相及Cruziana遗迹相;(5)Cenomanian-Turonian初期:至Cenomanian期,东特提斯发育已达鼎盛,发生全球最大规模的一次海侵,海平面达到最高,在岗巴-定日地区为一种滞留缺氧的深水盆地沉积环境,沉积一套富含有机质的黑色页岩,发育静海生物相与浮游有孔虫生物相及Nereites遗迹相;(6)Turonian-Campanian期:从晚白垩世Turonian期开始,特提斯洋脊扩张已停止活动,进入海退阶段。在特提斯南侧仍为浅海陆棚相,因此在岗巴-定日盆地主要为一套中薄层泥灰岩与黄绿色页岩互层的沉积,发育浮游有孔虫(Globotruncana动物群)生物相与Zoophcos遗迹相;(7)Maastrichtian期:晚白垩世Maastrichtian期由于印度板块继续向北俯冲,造成地壳有所抬升,发生大规模的海退,海水深度急剧变浅,岗巴-定日地区成为一种礁及礁后的浅滩环境(浅水内陆棚碳酸岩台地环境),浮游有孔虫基本绝迹,出现以Orbitoides-介形虫-固着蛤-藻类生物-珊瑚组合为特征的生物相;(8)晚白垩世末-古新世初,由于印度板块与亚洲板块之间发生初始碰撞,造成地壳的急剧抬升,该区发生大规模海退,形成极浅水环境,在藏南岗巴-定日地区沉积了古新世Danian早期的基堵拉组石英砂岩,发育Skolithos遗迹相。此时特提斯洋规模已经急剧减少,仅是一个残留海盆。
Cretaceous was one important stage in the evolutional history of Earth, in which occurred a series of major global geologic events such as global warming event, oceanic anoxic event, oceanic oxic events, mass extinction events. Situated in the southern part of Asian, Qinghai-Tibet Plateau constitutes the main body of the famous global W-E giant structural realm: the Tethyan Himalayan tectonic system.
     Based on the study of the palaeoecologic data of Cretaceous microfossils, fossil carbonate microfacies, ichinofacies, biofacies and relative sedimentary structures of the southern Tibet, this paper explored the Cretaceous palaeoenvironment and evolutional process of the Tethyan Himalayas. The main rults obtarined from this study are as following:
     (1) 16 fossil carbonate microfacies (MF1~MF16), 13 biofacies (BF1~BF13), and 5 ichinofacies (Nereites,Zoophycos,Cruziana,Glossifungites and Skolithos ichinofacies)are recognized from the Cretaceous of southern Tibet.
     (2) During Cretaceous, a“Deep North and Shallow South”palaeogeographic pattern occurred in the Tethyan Himalaya: the southern Tethyan Himalaya subzone was located in a shelf envirnment; the northern Tethyan Himalaya subzone was located in a slope-ocean basin envirnment.
     (3) During Cretaceous, an obivous transgression-agression cycle occurred in Tethyan Himalayan regiond and sea: (1) Berriasia-Barrem: a transgression occurred in Tethyan Himalaya; (2) Aptian: the transgression scale enlarged and the sea-water sharply deepened, the Gamba-Tingri area evoluted into outer shel; (3) Early Albian: an agression occurred in Tethyan Himalaya; (4) Late Albian: a transgression occurred in Tethyan Himalaya and the sea-water again deepened; (5) Cenomanian-Earliest Turonian: during Cenomanian, a largest global transgression occurred in Tethyan Himalaya; (6) Turonian-Campanian: occurred in Tethyan Himalaya entered into an agression stage;(7) Maastrichtian: the ongoing subduction of the Indian plate into the Asian plate caused the uplift of the crust and then the large-scale aggression; (8) Latest Creataous-Earliest Paleocen: the earliest collision between the Indian and Asian plates caused the sharp uplift of crust and the shallowest envirnment.
引文
BouDagher-Fadel MK. Evolution and geological significance of larger benthic foraminifera. London: Netherlands, 2008:215-296.
    Bolli HM, Beckmann JP, Saunders JB. Benthic foraminferal biostratigraphy of the south Caribbean region. Cambridge: Cambridge University, 1994:47-228.
    Chengshan Wang, Xiumian Hu, Massimo Sarti, Robert W. Scott, Xianghui Li. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research 26 (2005): 21–32.
    DolloL.La Paleontologic ethologioue Bull Soc Belqe Geol Paleont Hydrol,1910,23:377-421 Flügel, E., Microfacies analysis of limestones. Berlin-New York. 1982,633pp.
    Frey, R. W. and Pemberton, S. G., Trace fossil facies models. In: R. G. Walker (ed.), Facies models (2nd ed.). Geoscience Canada, Reprint Series 1984,1:189-207.
    Frey, R. W. and Seilacher, A., Uniformity in marine invertebrate ichnology. Lethaia 1980, 13:183-207.
    Hedberg H D. Reports - Nature, Usage, and nomen clature of biostratigraphic units. Bulletin of the American Association of petroleum Geologists, 1957,41:1877-1891.
    Jansal F, Enos P, Tucholkeb E, et al. Mesozoic-Cenozoic sedimentary formations of the North American Basin, western North Atlantic. Deep Drilling Resultsinthe Atlantic Ocean: Continental Marginsand Paleoenvironment. Am Geophys Union, 1979,3:1-57.
    Martinsson A, Ecostratigraphy and project Ecostratigraphy. Izv. Akad. Nauk. Kazakh. SSR, Ser. Geol., 1977, 4/5:11-20.
    Reiss Z, Hottinger, L. The Gulf of Aqaba. Ecological Micropaleontology. 3xxp., Berlin-Heidelberg-NewYork-Tokyo, 1984,p.283.
    Seilacher, A., Biogenic sedimentary structures. In: J. Imbrie and N. Newell (eds.), Approaches to Paleoecology. New York. Wiley, 1964,296-316.
    Seilacher, A., Bathymetry of trace fossils. Mar. Geol. 1967,5:413-428 .
    Tucholke and Vogt.. Western North Atlantic sedimentary evolution and aspects of tectonic history. Kaneps A, et al. Initial Reports of the Deep Sea Drilling Project. 1979,43:695-717.
    Tucholke and Vogt. Western North Atlantic sedimentary evolution and aspects of tectonic history.Kaneps A,et al. Initial Reports of the Deep Sea Drilling Project. 1979,43:695-717.
    Tucholke and Vogt. Western North Atlantic: Sedimentary evolution and aspects of tectonic history. Tuchlo K, Vogt PR, et al. Initial Reports of the Deep Sea Drilling Project. 1979,43: 791-825.
    Wagreicha M., Krenmayr H.-G. Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation, Austria): slope topography and clastic input as primary controlling factors. Cretaceous Research, 2005 (26): 57–64.
    Willems, H., Sedimentary History of the Tethys Himalaya Continental Margin in South Tibet (Gamba, Tingri) during Upper Cretaceous and Paleogene (Xizang Autonomous Region, P R China). In: H. Willems (ed.), Geoscientific inverstigations in the Tethyan Himalayas. Berichte aus dem Fachbereich Geowissenschaften der Universit?t Bremen, 1993, 38:49-181.
    Willems, H. and Zhang Binggao, Cretaceous and Paleogene Sediments of the Tibetan Tethys Himalaya in the Area of Gamba (South Tibet, P R China). In: H. Willems (ed.), Geoscientific inverstigations in the Tethyan Himalayas. Berichte aus dem fachbereich Geowissenschaften der Universit?t Bremen, 1993,38:3-28.
    Willems, H. &. Cretaceous and Paleogene Sediments of the Tibetan Tethys Himalaya in the Area of Tingri (South Tibet, P R China). In H. Willems (ed.), Geoscientific inverstigations in the Tethyan Himalayas. Berichte aus dem Fachbereich Geowissenschaften der Universit?t Bremen, 1993,38:29-48.
    Willems, H., Zhou Zhicheng, Zhang Binggao, Grafe, K. U., Stratigraphy of the Upper Cretaceous and Lower Tertiary Strata in the Tethyan Himalayas of Tibet (Tingri Area, China). Geol. Rundsch. 1996, 85:723-754.
    Wilson J L. Carbonate facies in geologic history. Berlin-Heidelberg-NewYork, 1975. 1~471.
    Wolfgang K, Ann H.东西特提斯晚白垩世深水底栖有孔虫生物相和岩相.地学前缘,2005,12(2):87-102.
    包洪平,杨承运.碳酸盐岩微相分析及其在岩相古地理研究中的意义.岩相古地理,1999,19(6):59-64.
    陈源仁.生态地层学和群落古生态.成都地质学院学报,1984,4:37-50.
    郝冶纯,茅绍智.微体古生物学教程。北京:地质出版社, 1989,11-13,174-175.
    李国彪,万晓樵,刘文灿.藏南萨迦县赛区“混杂岩”放射虫的发现及其地质意义.地质通报,2003,22(10-11):30-37.等,
    李国彪,万晓樵,刘文灿.西藏南部古近纪微体古生物及盆地演化特征.北京:地质出版社, 2005,8-133.
    李国彪,万晓樵,刘文灿.雅鲁藏布江缝合带南侧古近纪海相地层的发现及其构造意义.中国科学(D辑),2004,34(3):228-240.
    李国彪,万晓樵,于潮.白垩纪特提斯喜马拉雅层序地层分析.沉积与特提斯地质,2003,23(3):21-34.
    万晓樵.从有孔虫分析西藏南部白垩纪海平面升降.现代地质. 1992,6(4):392-398.
    万晓樵.西藏第三纪有孔虫生物地层及地理环境.现代地质,1987,1(1):15-47.
    万晓樵.西藏岗巴地区白垩纪地层及有孔虫动物群.见:李廷栋主编,青藏高原地质文集, 1985,16: 203-228.北京:地质出版社.
    万晓樵.西藏白垩纪浮游有孔虫化石带.见:李廷栋主编,青藏高原地质文集, 1987,18: 112-123.北京:地质出版社.
    万晓樵.西藏白垩纪-早第三纪有孔虫与特提斯喜马拉雅海的演化.微体古生物学报, 1990, 7( 2): 169-186.
    万晓樵.从有孔虫分析西藏南部白垩纪海平面升降.现代地质, 1992, 6( 4): 392-398.
    万晓樵,丁林.西藏吉隆白垩纪末期浮游有孔虫的发现及其年代意义.古生物学报,2004,41(1):89-95.
    万晓樵,赵文金,李国彪.对西藏岗巴上白垩统的新认识.现代地质, 2000, 14( 3): 281-285.
    万晓樵,孙立新,刘文灿,李国彪.西藏雅鲁藏布江缝合带地层.北京:地质出版社.2007.
    王成善,李祥辉,胡修棉.特提斯喜马拉雅沉积地质与大陆古海洋学.北京:地质出版社, 2005,49-104.
    王成善,夏代祥,周详.雅鲁藏布江缝合带-喜马拉雅山地质.北京:地质出版社, 1999,1-82.
    王建平.西藏东部提特斯地质.北京:科学出版社,2003,1-64.
    旺罗,万晓樵,李杰.西藏日喀则地区恰布林组地层及构造背景分析.现代地质,1999,13(3):281-286.
    杨式溥张建平杨洪.古生态学研究方法。现代地质.1991,5(1):1-2.
    余光明,王成善.西藏特提斯沉积地质.北京:地质出版社,1990.
    余素玉.化石碳酸盐岩微相.北京:地质出版社,1989.
    周志澄,Helmut Willems,章炳高.西藏南部白垩系及下第三系的生物相及遗迹相.微体古生物学报,1998,15(3):307-317.
    赵文金.西藏岗巴晚白垩世有孔虫动物群与海平面变化.高校地质学报,2001,7(1):106-114.
    赵文金,万晓樵.特提斯-喜马拉雅海演化晚期的生物古海洋事件.北京:地质出版社, 2003,1-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700