用户名: 密码: 验证码:
SF-PLGA共混纳米纤维的制备及在神经修复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程学是一门将细胞生物学和材料学相结合的新兴学科。组织工程学通过将种子细胞种植于仿生支架材料上,并在体外培养增殖,在形成新的组织后植入受损部位,从而达到修复和重建原人体组织结构和功能的目的。因此,组织工程学的关键,同时也是具有挑战性的一步就是如何制备具有仿生天然细胞外基质的工程支架。首先,这种组织工程支架要在结构上模拟天然细胞外基质的三维多孔结构;其次,该支架要具有良好的生物安全性和相容性;最后,这种支架要从功能上模拟天然细胞外基质,即能够促进细胞的生长和诱导组织的形成。
     静电纺丝技术是现阶段一种制备数十到数百纳米纤维的有效方法。由于生物高分子具有良好的生物相容性,近年来国内外都对生物高分子的静电纺丝做了大量的研究。静电纺生物高分子在组织工程支架、组织修复等方面具有独特的优势。
     本实验通过静电纺丝的方法制备SF-PLGA纳米纤维膜,并通过SEM、FTIR、XRD、接触角、力学性能测试分析该纳米纤维的各项物理、化学性能。实验发现该共混纤维的直径随着PLGA在共混体系中的比例的增加而增大;在共混比例相同时,直径随着溶液总质量体积比的递增而逐渐增大。随着丝素蛋白的含量的增加,力学性能下降,但亲水性有所提高。为了提高静电纺SF-PLGA纳米纤维的耐水性和稳定性,选择甲醇蒸气对SF-PLGA共混纳米纤维进行后处理,并对处理后的SF-PLGA纳米纤维的性能进行了研究,实验发现经过处理后的共混纳米纤维,直径较处理前有所增大。甲醇蒸气处理后的纤维接触角和力学性能都较处理前有所减弱,但纯SF经过处理后,应力变大。通过这些测试,我们对SF-PLGA共混纳米纤维处理前后的物理、化学性质有了基本了解,为后续的细胞实验和动物实验奠定了基础。
     通过在共混SF-PLGA纳米纤维膜上种植雪旺细胞,用MTT法检测细胞的黏附与增殖情况,在体外评价材料的生物相容性。通过SEM来检测细胞在纤维膜上的生长形态。黏附实验表明细胞在材料上能很好的黏附。增殖实验表明细胞在各种比例的纳米纤维材料上的增殖情况都要好于对照组(玻片),随着时间的增长,细胞的量明显增多。SEM结果显示细胞在纤维膜上能保持良好的细胞形态。SF-PLGA共混纳米纤维膜能为细胞提供良好的生长环境,未表现出细胞毒性。
     对SF-PLGA共混纳米纤维膜在模拟体内环境37℃PBS缓冲液(7.4±0.1)条件下的体外降解性能进行了探讨。通过对降解不同时间后纳米纤维膜的失重、降解液的pH值变化及纳米纤维膜的形貌观察等一系列的分析和表征,表明了纯的SF静电纺纳米纤维膜基本上不降解,SF-PLGA(2:8)共混纳米纤维膜降解的最快,在SF-PLGA共混纳米纤维膜的降解中发现SF的加入,使PLGA的降解速率加快。
     采用高速旋转滚筒接收装置制备了取向SF-PLGA共混纳米纤维并研究了其与雪旺细胞的相互作用。实验结果表明纤维的取向情况和滚筒的旋转速率有着密切的关系,随着旋转速率的增加,纤维的取向情况越好。对雪旺细胞在取向、无规的静电纺纤维膜上的增殖进行了研究,增殖实验的结果表明雪旺细胞在SF-PLGA取向和无规静电纺纳米纤维上的增殖均高于取向和无规的PLGA静电纺纳米纤维上的增殖,且细胞在取向SF-PLGA共混纳米纤维上的增殖均高于无规SF-PLGA纳米纤维上的增殖。说明取向SF-PLGA纳米纤维的拓扑结构能引导细胞沿着纤维的方向生长。
     以SD大鼠作为动物模型,取向SF-PLGA (2:8)纳米纤维制成的神经导管用于桥接大鼠坐骨神经10mm缺损。PLGA纳米纤维制成的神经导管与自体神经作为对照组。术后12周从大体观察、组织学以及图像分析等指标检测比较各组坐骨神经再生的情况。所有的结果均表明:取向SF-PLGA纳米纤维神经导管组再生神经纤维的质量和数量均优于取向PLGA纳米纤维神经导管组。与取向PLGA纳米纤维神经导管相比,SF-PLGA纳米纤维神经导管更能促进周围神经的再生。但是,与自体神经相比较还是略差一点。
Tissue engineering (TE) is one of the new subjects which combined Biology and Material Science. The basic concept of TE is aimed to reestablish human tissue and organs by planting the TE scaffolds with functional cells incorporated into the damaged position. Therefore, the key point and the most challenged technique of TE are to fabricate the tissue engineering scaffolds which could mimic the natural extracellular matrix (ECM).
     Electrospinning is one of the effective methods to produce nanofibers with diameter ranging from several nanometers to hundreds of nanometers. Recently, electrospinning of biopolymers attracts more attentions owing to their good biocompatibility. The electrospun nanofibers have many potential applications in tissue engineering.
     In this study, the PLGA/SF blended nanofibrous membranes with different weight ratios were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent via electrospinng. The nanofibrous morphologies were observed by SEM, the results showed that the diameters of resuting nanofibers were affected by solution concentrations and the blend ratio. The water contact angles increased by decreasing the contents of SF. ATR-FTIR and XRD analyses demonstrated no obvious chemical bond reaction between SF and PLGA.The tensile strength and elongation at break of nanofibrous membrances increased with increasing content of PLGA. The unique aspect of the post-processing protocol in this study involves the use of methanol as the post-processing agent to enhance the water resisting property and stability. The nanofibrous morphologies were observed by SEM, the results showed that the nanofibers still maintained an excellent morphology after treated by methanol vapor. XRD analyses demonstrated that the crystallinity occured significant changes. Water contact angles of SF-PLGA decreased after treated, and also decreased while increasing the contents of SF. The tensile strength and elongation at break of post-processed nanofibrous membrances decreased compared with untreated mats except the pure SF mats. The tensile strength of the treated SF sample was increased, but the elongation at break was decreased. The blended nanofibers are potential for their application in tissue engineering scaffolds and to develop functional biomaterials.
     Schwann cells (SCs) were seeded onto nanofiber mats for adherence and proliferation studies. The cells had a good adherence on nanofibrous mats with SF-PLGA at different ratios, and the amount of the cells'proliferation was more than that of control group on the first day after seeding. SEM images showed that cells maintained good shape on nanofibrous mats. These results demonstrated that treated SF-PLGA nanofibrous scaffolds showed no cytotoxicity toward cell growth with good biocompatibility in vitro.
     In vitro degradation of SF-PLGA nanofibrous scaffolds were carried out in phosphate buffered saline (7.4±0.1) at 37℃for 6 months. Through a series of analysis and characterization(including loss weight, pH changes of PBS solutions) to fiberous scaffolds after degradation for different time, the results showed that the pure SF nanofibrous scaffolds were not degradable in PBS, the degradation rate of the SF-PLGA(2:8) fibrous scaffolds were faster than others. The adding of SF accelerated the degradation rate of PLGA.
     Aligned nanofibrous scaffolds of SF-PLGA(2:8) were fabricated by electrospinning technique under optimum condition. The degree of orientation increased with the increase in the rotating drum rates from 500 to 4000rpm. MTT results showed Schwann cells(SCs) had greater proliferation on random/aligner SF-PLGA nanofibrous scaffolds than that on random/aligned PLGA fibrous scaffolds. And SCs had greater proliferation on aligned SF-PLGA nanofibrous scaffolds than random SF-PLGA nanofibrous scaffolds. The alignment of the SF-PLGA nanofibers could control cell orientation and strengthen the interaction between the cell body and the fibers in the longitudinal directon of the fibers.
     Adult male Sprague-Dawley (SD) rats were used for animal models. The aligned SF-PLGA(2:8) nanofibrous nerve guidance conduit (NGC) was used for bridge implantation across a 10-mm long sciatic nerve defect in rats, PLGA nanofibrous nerve guidance conduit and nerve autografts were used control. The outcome of regenerated nerve at 12 weeks was evaluated by a combination of histological and electron microscopy study.
引文
[1]Langer R, Vacanti J P. Tissue engineering. Science.1993,260:920-926.
    [2]Nernm R M. The challenge of limitating nature. Chapter2, Page:9-15.
    [3]曹谊林.组织工程与重建外科杂志.2005,1:5-8.
    [4]Stock U A, Vacanti J P. Annual Review of Medicine.2001,52:443-451.
    [5]阮建明,邹俭鹏,黄伯云.生物材料学.北京,科学出版社,2004.
    [6]杨志明.组织工程.北京:化学工业出版社,2002.
    [7]Vacanti C A, Langer R, Schloo B, et al. Plast. Reconstr. Surg.1991,88:753-759.
    [8]Cao Y L, Vacanti J P, Paige K T, et al. Plast Reconstr Surg.1997,100:297-302.
    [9]Liu W, Cui L, Cao Y L. Tissue Eng.2003,9 (supl):S17-31.
    [10]Yang Z M, Xie H Q, Li T. Hand Surgery.2000, (1):49-55.
    [11]柴岗,张燕,刘伟,崔磊,曹谊林.中华医学杂志,2003,83:1676-1681.
    [12]Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. Biomaterials.2005,(26) 35:7410-7417.
    [13]Vernon R B, Gooden M D, Lara S L. Biomaterials.2005, (26) 16:3131-3140.
    [14]Li Z S, Ramay H R, Hauch K D. et al. Biomaterials.2005, (26) 18:3919-3928.
    [15]Mao J S, Zhao L G, Yin Y J. Biomaterials.2003, (24) 6:1067-1074.
    [16]Takashi Kaito, Akira Myoui, Kunio Takaoka, et al. Biomaterials.2005,26(1): 73-79.
    [17]Tiaw K S, Goh S W, Hong M, et al. Biomaterials.2005, (26) 7:763-769.
    [18]Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and characterization of poly(L-lactic acid) foams, Polymer,1994,35(5):1068-1077
    [19]Nazarov R, Jin HJ and Kaplan DL, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules,2004,5(3):718-726.
    [20]Whang K, Thomas Ch, Healy KE. A Novel methods to fabricate bioabsorbable scaffolds. Polymer,1995,36(4):837-842
    [21]Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming, Biomed. Mater. Res.1998,42(3):396-402
    [22]Yang F,Murugan R,Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering, Biomaterials,2004,25(10): 1891-1900
    [23]Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science,2004,303(27): 1352-1355
    [24]何创龙,夏烈文,罗彦凤,王远亮,快速成形技术在骨组织工程领域的应用进展,生物医学工程学杂志,2004,21(5),871-875
    [25]Zhang YZ, Lim, CT, Ramakrishna S, Huang ZM, Recent development of polymer nanofibers for biomedical and biotechnological applications, Journal of Materials Science:Materials in Medicine,2005,16(10),933-946
    [26]Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface, Science,2005,310:1135-1138
    [27]Ramakrishna S, et al. An Introduction to Electrospinning and Nanofibers, World Scientific,2005
    [28]Formhals A. U.S. Pat.2 077 373 (1937).
    [29]Formhals A. U.S. Pat.2 158 416 (1939).
    [30]Formhals A. U.S. Pat.2 160 962 (1939).
    [31]Formhals A. U.S. Pat.2 187 306 (1940).
    [32]Formhals A. U.S. Pat.2 323 025 (1940).
    [33]Formhals A. U.S. Pat.2 349 950 (1944).
    [34]Simons H L. U.S. Pat.3 280 229 (1966).
    [35]Baumgarten P K. J. Colloid Interface Sci.1971,36:71-79.
    [36]Larrondo L and Manley R ST. J. Polym. Sci., Polym. Phys.1981,19:909-920.
    [37]Larrondo L and Manley R ST. J. Polym. Sci., Polym. Phys.1981,19:921-932.
    [38]Larrondo L and Manley R ST. J. Polym. Sci., Polym. Phys.1981,19:933-940.
    [39]Doshi J, Reneker D H. Journal of Electrostatics,1995,35:151-160.
    [40]Srinivasan G and Reneker D H. Polym. Int.1995,36,195-201.
    [41]Reneker D H and Chun L, Nanotechnology,1996,7:216-223.
    [42]Fang X, Reneker D H. J. Macromol. Sci., Phys.1997, B36:169-173.
    [43]Kim J and Reneker D H. Polym. Eng. Sci.1999,39 (5):849-854.
    [44]Fong H, Chun L, Reneker D H. Polymer.1999,40:4585-4592.
    [45]Fong H and Reneker D H. J. Polym. Sci., Part B:Polym. Phys.1999,37: 3488-3493.
    [46]Chun L, Reneker D H, Fong H, et al. J. Adv. Mater.1999,31(1):36-41.
    [47]Huang Z M, Zhang Y Z, Kotaki M. RamAkrlshna S. Compos. Sci. Technol. 2003,63 (15):2223-2253.
    [48]Li D,Xia Y N.Adv Mater.2004,16(14):1154-1155.
    [49]郭建.纳米纤维静电纺丝机-纳米蜘蛛.全球科技经济瞭望.2005,230(2):64.
    [50]姚永毅.静电纺丝法制备聚合物纳米纤维及其应用.四川大学博士学位论文, 2004.
    [51]Chew SY, Mi RF, Hoke A, Leong KW. Aligned protein-polymer composite fibers enhance nerve regeneration:A potential tissue-engineering platform. Adv Funct Mater 2007;17(8):1288-1296.
    [52]Matsuda A, Kagata G, Kino R, Tanaka J. Preparation of chitosan nanofiber tube by electrospinning. Journal of Nanoscience and Nanotechnology 2007;7(3):852-855.
    [53]Lu MC, Hsiang SW, Lai TY, Yao CH, Lin LY, Chen YS. Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration. Journal of Biomaterials Science-Polymer Edition 2007;18(7):843-863.
    [54]Li XQ, Su Y, Chen R, He CL, Wang HS, Mo XM. Fabrication and Properties of Core-Shell Structure P(LLA-CL) Nanofibers by Coaxial Electrospinning. J Appl Polym Sci 2009;111(3):1564-1570.
    [55]Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed 2008;19(5):677-691.
    [56]Rosenberg, MD. Cell guidance by alterations in monomolecular films, Science, 1963,139:411-412
    [57]Laurencin, CT, Ambrosio, AMA, Borden MD, et al. Tissue engineering: Orthopedic applications, Annu Rev Biomed Eng.,1999,1:19-46
    [58]Stevens M M, George J L H. Exploring and Engineering the Cell Surface Interface, Science,2005,310:1135-1138
    [59]Li WJ, Laurencin CT, Caterson EJ,, et al. Electrospun nanofibrous structure:a novel scaffold for tissue engineering, Journal of Biomedical Materials Research, 2002,60(4):613-621
    [60]Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials,2003, 24:2077-2082
    [61]Boland ED, Matthews JA, Pawlowski KJ, et al. Electrospinning collagen and elastin:preliminary vascular tissue engineering. Front. Biosci.,2004,1(9):1422-1432
    [62]Stitzel, JD, Pawlowski K, Wnek GE, et al. Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold, J. Biomater. Appl.,2001,16:22-33
    [63]Xu CY, Yang F, Wang S, et al. In vitro study of human vascular endothelial cell function on materials with various surface roughness, J. Biomed. Mater. Res., 2004,71A(1):154-161
    [64]Bini TB, Gao SJ, Tan TC, et al. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration, Nanotechnology,2004,15:1459-1464
    [65]Zong X, Bien H, Chung CY, et al. Electrospun non-woven membranes as scaffolds for heart tissue constructs, Polymer Preprints,2003,44(2):96-97
    [66]Shin M, Ishii O, Sueda T, et al. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials.2004,25(17):3717-3723
    [67]Zhang YZ, Venugopa JR, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-Collagen nanofibers using fibroblasts, Biomacromolecules,2005,6(5):2583-2589
    [68]Espy PG, McManus MC, Bowlin GL, et al. Electrospun elastin scaffolds for use in bladder tissue engineering, J. Urology. Suppl. S. APR.,2004,171 (4):457-457
    [69]Zhang YZ, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med,2005,16:933-946
    [70]Dabney SE, The use of electrospinning technology to produce wound dressings. PhD Dissertation, The University of Akron,2002.
    [71]Zahedi P, Rezaeiana I, Ranaei-Siadat SO,Jafari SH,Supaphol P.A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages.Polym Adv Technol,2010,21:77-95.
    [72]Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers:Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27(8):1452-1461.
    [73]Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008;313:183-188.
    [74]Li J, He A, Zheng J, Han CC. Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 2006 Jul; 7(7):2243-2247.
    [75]Li WJ, Laurencin CT, Caterson EJ,, et al. Electrospun nanofibrous structure:a novel scaffold for tissue engineering, Journal of Biomedical Materials Research, 2002,60(4):613-621
    [76]Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (epsilon-caprolactone) scaffolds, Journal of Biomedical Materials Research,2003,67A(4):1105-1114
    [77]Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells, Biomaterials, 2005,26(6):599-609
    [78]Shields KJ, Beckman MJ, Bowlin GL, et al. Mechanical properties and cellular proliferation of electrospun collagen type II, Tissue Eng.,2004,10(9-10): 1510-1517
    [79]Matthews JA, Boland ED, Wnek GE, et al. Electrospinning of collagen type II:a feasibility study, Journal of Bioactive and Compatible Polymers,2003,18: 125-134
    [80]Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials,2003, 24:2077-2082
    [81]Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold, Tissue Eng., 2004,10(1-2):33-41
    [82]Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials,2005,26(15):2603-2610
    [83]Boland ED, Matthews JA, Pawlowski KJ, et al. Electrospinning collagen and elastin:preliminary vascular tissue engineering. Front. Biosci.,2004,1(9):1422-1432
    [84]Stitzel, JD, Pawlowski K, Wnek GE, et al. Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold, J. Biomater. Appl.,2001,16:22-33
    [85]Xu CY, Yang F, Wang S, et al. In vitro study of human vascular endothelial cell function on materials with various surface roughness, J. Biomed. Mater. Res., 2004,71A(1):154-161
    [86]Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofibers:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials,2004,25(10):1883-1890
    [87]Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering, Biomaterials,2004,25:877-886
    [88]Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials,2005,26(15):2527-2536
    [89]Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29:653-661.
    [90]Bini TB, Gao SJ, Wang S, Ramakrishna S. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering:an in vitro study. JMatS 2006;41(19):6453-6459.
    [91]M.F. Meek, P.H. Robinson, I Stokroos, et al. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-co-CL) nerve guide filled with modified denatured muscle tissue. Biomaterials,2001(22):1177-1185.
    [92]刘世清,李皓桓,彭昊等.吡咯喹啉醌充填导管诱导外周神经再生的实验研究.中华显微外科杂志,2005,28(2):145-147.
    [93]Wang KK, Costas PD, Bryan DJ, et al. Inside-out vein graft promotes improved nerve regeneration in rats. Microsurgery,1993(14):608-612.
    [94]Chen YS., C. L. Hsieh, C. C. Tsai, et al. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 2009,21,1541-1547.
    [95]Yoshii S, Oka M. Collagen filaments as a scaffold for nerve regeneration. J Biomed Mater Res,2001(5):400-405.
    [96]McDaniel, Jr. HE. Tissue engineered collagen nerve guidance channels. In:Stark GB, Horch R, Tanoszos Eeditors. Biological matrices and tissue reconstruction. Heidelberg:Springer,1998(32):237-242.
    [97]Sieminski AL, Gooch KJ. Biomaterial-microvasculature interactions. Biomaterials,2000(21):2233-2241
    [98]M.Rafiuddin Ahmed, U.Venkateshwarlu, R.Jayakumar,et al. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials, 2004(25):2585-2594.
    [99]Chen YS, Chang JY, Cheng CY. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005(26):3911-3918.
    [100]Chang JY, Lin JH, Yao CH, et al. In Vivo Evaluation of a Biodegradable EDC/NHS-Cross-Linked Gelatin Peripheral Nerve Guide Conduit Material. Macromol. Biosci,2007(7):500-507.
    [101]Eugene Khor, Lim LY. Implantable applications of chitin and chitosan. Biomaterials,2003 (24):2339-2349.
    [102]Thomas Freier, Rivelino Montenegro, Hui Shan Koh, et al. Shoichet et al. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials, 2005 (26):4624-4632.
    [103]Wang AJ, Ao Q, Cao WL, et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J Biomed Mater Res,2006,(79)A:36-46.
    [104]Ana Paula Pego, Andre A. Poot, Dirk W. Grijpma,et al. Biodegradable elastomeric scaffolds for soft tissue engineering. J Contro Release,2003 (87):69-79.
    [105]金国华,田美玲,秦建兵,等. BDNF、NGF对体外长期培养的胚基底前脑胆碱能神经元的影响.神经解剖学杂志,2001,17(4):337-341.
    [106]张玉波,伍亚民,杨恒文,等.NGF促周围神经再生过程中对血管生成的影响.第三军医大学学报,2005,14(27)1463-1466.
    [107]Fine, Martin Hoss, Reynolds, et al. Microarry technology GEM microarrys and drug discovery. [J].J Ind. Microbiol Biotechnol.2002,285(3):180-185.
    [108]He K, Nukada H, Urakami T, et al. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ):implications for its function in biological systems. Biochemical Pharmacology,65,2003,67-74.
    [109]廖文, 张庆富, 赵永歧, 等.复方丹参对周围神经再生的影响.中国康复,2004,19(3):131-133.
    [110]Fatima Rosalina Pereira Lopes, Lenira Camargo de Moura Campos, Jose Dias Correa Jr et al. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Experimental Neurology,2006(198):457-468.
    [111]Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed 2008;19(5):677-691.
    [112]Chen ZG, Mo XM, Qing FL. Electrospinning of collagen-chitosan complex. Mater Lett 2007;61(16):3490-3494.
    [113]Dong C, Duan B, Yuan X, Yao K. [Electrospinning and morphology of ultrafine poly (D, L-lactide) fibers]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005;22(6):1245-1248.
    [114]Zong XH, Kim K, Fang DF, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer,2002,43:4403-4412
    [115]Ko EP, Jung SY; Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers, International Journal of Biological Macromolecules,2006,38:165-173
    [116]Bartolo DL, Morelli S, Bader A,Drioli E. The influence of polymeric membrane surface free energy on cell metabolic functions. J Mater Sci Mater Med,2001,12:959-963.
    [117]Ishide M, Asakura T, Yokoi M, Saito H. Solvent and mechanical treatment induced conformational transition of silk fibroins studies by high resolution solid state carbon 13 NMR spectroscopy,Macromolecules,1990,23:88-94.
    [118]Tsukada M, Gotoh Y, Nagura M, Minoura N,Kasai N, Freddi G. Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions, J Polym Sci, Part B:Polym Phys,1994,32:961-968.
    [119]Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano-and microfiber meshes for tissue engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials,2005,26:37-46.
    [120]Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng,2007,13:1845-1866.
    [121]Yourtee MD, Tong PY, Rose LA. Effect of spivoorthocarbonate volume modifier comonomers on the in vitro toxicology of evial nonshrinlering dental epoxycopolymers. Res. Commun. Mol. Pathol. Pharmacol.,1994,86(3):347
    [122]王栩,邬于川,夏世平.MTT法进行活菌计数的方法学探讨.泸州医学院学报,2002,25(4):291-293
    [123]秦廷武,杨志明,蔡绍皙.中国修复重建外科杂志.1999,13(1):31-37
    [124]Healy K E, Rezania A, Stile. Ann. NY. Acad. Sci.1999,875:24-35
    [125]Bearinger J P, Castnr D G, Healy K E. J. Biomater. Sci. Polym. E.1998, (9)7: 629-652
    [126]DeGiglio E, Sabbatini L, Zambonin P G J. Biomater. Sci. Polym. E.1999,10(8): 845-858
    [127]Zhong SP, Teo WE, Zhu X, Roger W, Ramakrishna S. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res Part A,2009,79:456-463.
    [128]Ma ZW, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tessue Eng,2005,11:1149-1158.
    [129]Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahanid M, Ramakrishn S. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials,2008,29:4532-4539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700