用户名: 密码: 验证码:
天然气水合物钻探泥浆冷却系统数值模拟及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界经济的飞速发展给传统能源的供给带来了巨大的压力,寻找新兴能源成为了各国特别是能源紧缺国家亟待解决的问题。天然气水合物作为一种储量大、分布范围广污染少的新兴能源已被列入许多国家的能源战略规划之中。对天然气水合物的赋存区域
     及孔深的勘探是其开发的前提,如何更加保真地钻取天然气水合物样品成了钻探工作的
     首要考虑因素。根据天然气水合物的热物理性质和赋存的温压条件可知,在天然气水合
     物的勘探过程中,应在各方面降低对孔底岩心及孔壁的热量输入,因此对循环的泥浆进
     行冷却成了一道必备的钻探工艺。
     通过国内外泥浆冷却技术的应用现状可以发现,目前尚未发现适用于中国永冻区天
     然气水合物科学钻探的泥浆冷却系统,研制一套适用于中国永冻区天然气水合物科学钻探的泥浆冷却系统迫在眉睫。经过对整套泥浆冷却系统的整体设计方案进行反复论证,
     并综合考虑中国木里盆地天然气水合物科钻的现场条件,初步得出了整套泥浆冷却系统
     的技术方案。首先根据现场钻探工艺的要求,得出了泥浆冷却系统所需的制冷机组的功
     率。其次依据传热学、换热器及流体力学等相关方面的知识对冷却系统的套管式换热器
     进行理论计算,得出了套管式换热器的管径、管长以及管路压力损失,进而依据这些数
     据选定了整套泥浆冷却系统的配套设备。
     运用流体分析软件
     对整套泥浆冷却系统进行数值模拟,通过数值模拟的效果来验证理论计算的可靠性。最后通过对数值模拟的温度云图及温度变化曲线的分析
     可以得出:泥浆冷却系统可以在与理论计算同等的边界条件下,泥浆的温度由入口处的
     0℃降到出口处的-5.4℃,降幅达到了5.4℃,这个效果要好于理论计算的2℃的温差。
     这说明理论计算设计的2℃温差的目标是偏于安全的,冷却系统可以进行室内试验。通
     过对泥浆冷却的室内试验数据进行分析可知,泥浆在初始温度较高时,进出口温差可达
     5.8℃,而在整个过程中平均温差也达到了2.22℃,泥浆池最终温度也维持在-5℃左右,
     这说明泥浆冷却系统室内试验效果良好,可以进行野外试验及应用。
     泥浆冷却系统运用到2009及2010年的木里盆地天然气水合物科学钻探中。在2009年的科钻中,冷却系统在开始使用时出现管路堵塞结冰的现象,分析原因为泥浆耐低温
     能力不足所致。通过用
     对现场的情况进行数值模拟得出了合适的制冷机组温控范围。在此后的应用中泥浆的进出口平均温差达到了3℃左右,并且泥浆温度维持在0℃-2℃的钻探工艺规程所要求的温度范围。最终为我国首次在陆地永冻区保真地取到天然气水合物样品起到了关键作用。
     通过2009年冷却系统在木里盆地的应用情况来看,泥浆冷却系统还存在着许多不足,2010年针对整套系统的不足进行改进加工,生产出了第二代天然气水合物钻井泥浆冷却系统,并将其应用于漠河天然气水合物科学钻探中。第二套泥浆冷却系统应用方便,效果良好。最后在相同的要求和条件下,通过理论计算对比套管式换热器内管为螺纹管和光滑管的制冷效果,发现螺纹管的制冷效果要远好于光滑管。
The rapid development of the world economy has brought great pressure to the supply of the traditional energy.Finding new energy has been the urgent problem to solve for every country especially the countries that lack of energy.Gas hydrates as a largely reserved, widely distributed and less polluting new energy has been included in many countries'energy strategy plan.The exploration of the area and depth of gas hydrates storage is the premise to the exploitation.How to get the more fidelity gas hydrates samples has become the prime consideration for the drilling project.According to the thermal physical properties and the temperature and pressure conditions of gas hydrates, shuold reduce the energy input into the bore and the wall of the hole in the drilling process, so cooling the circulating mud is the necessary drilling technology.
     Through the application of domestic and international status of the mud cooling system we can find that there is not a drilling mud cooling system fit for Chinese permafrost gas hydrate scientific drilling, so developing a suit of drilling mud cooling system fit for Chinese permafrost gas hydrate scientific drilling is very urgent.After repeatedly discussion of mud cooling system overall design and comprehensive consideration of the field conditions, get the technical program draw of the mud cooling system firstly according the drilling technology requirements of the project, obtain the refrigeration unit power of mud the mud cooling system. and then design the mud cooling system with theoretical calculation based on the heat transfer, heat exchanger theory, fluid dynamics and other related knowledge to get the diameter, the length and the pressure loss of the pipe and finally Select the corollary equipment of the mud cooling system according these date.
     Using fluid analysis software FLUENT to simulate the mud cooling system to verify the reliability of theoretical calculations by the results. Finally, can get these result as follows by analyzing the temperature nephogram and the temperature curve of the numerical simulation:the temperature of the entrance can ruduce 5.4℃by the exit from 0℃to-5.4℃with the same boundary conditions of the.this result is better than 2℃temperature difference of the theoretical calculation.This shows that theoretical design is safer and can do. can get these result as follows by analyzing laboratory tests dates:in the beginning the mud temperature is high and the temperature difference of the entrance and the exit can be up to 5.8℃, while the average temperature difference has reached 2.22℃throughout the whole process and the final temperature of the mud pool are maintained at -5℃, indicating that the laboratory test result is good and the mud cooling system can be applied in the field project.
     The mud cooling system has been applied in the Muli basin natural gas hydrate scientific drilling project in 2009 and 2010.in the 2009 scientific drilling project, at the beginning the mud freeze and block the pipe this is beccause that the low temperature resistance of the mud is weak.obatain a suitable temperature range of refrigeration units by numerical simulate using FLUENT software. the average temperature difference of import and export reached about 3℃in the next applications and the mud temperature is maintained at 0℃~2℃that the drilling Technology required.Eventually for the first time get the fidelity gas hydrate samples in Chinese permafrost.
     From the application situation in Muli basin the mud cooling system also has many disadvantages. improve and manufacture the second generation the entire mud cooling system in 2010 and apply it in the Mohe gas hydrate Scientific drilling. the second generation of gas hydrate mud cooling system is more convenient to use and the effect is prefect. by theoretical calculations in the same requirements and conditions can find that the cooling effect of the screw thread pipe is much better than the smooth pipe.
引文
[1]金庆焕.天然气水合物颇—未来的新能源[J].中国工程科学,2000,(11):29-34
    [2]Milkov A V.Global estimates of hydrate-bound gas in marine sediments:how much is really out there[J].Earth-Science Reviews,2004,66
    [3]Sloan E D. International Conference on Natural Gas Hydrates. Annals of the New York Academy of Sciences,1994,715
    [4]陈作义,杨晓西,叶国兴,等.天然气水合物概况及最新研究进展[J].海洋通报,2002,21(3):78-85
    [5]许红,黄群权,夏斌,等.最新国际天然气水合物研究现状与资源潜力评估[J].地质勘探,2005,(5):21-25
    [6]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,34(6):953-959
    [7]张永勤,孙建华,贾志耀,等.中国陆地永久冻土带天然气水合物钻探技术研究与应用[J].探矿工程(岩土钻掘工程),2009,36(Z1)
    [8]周怀阳,彭晓彤,等.天然气水合物勘探开发技术研究进展[J].地质与勘探,2002,38(1):70-73
    [9]段新胜,鄢泰宁,陈劲,等.发展我国海底取样技术的几点设想[J].地质与勘探,2003,39(2):69-73
    [10]蒋国盛,宁伏龙,黎忠文,等.钻进过程中天然气水合物的分解抑制和诱发分解[J].地质与勘探,2001,37(6):86-87
    [11]郭平,刘世鑫,杜建芬.天然气水合物气藏开发[M].北京:石油工业出版社,2006,95-96
    [12]市川佑一郎,田志坤译.甲烷水合物的勘探与生产[J].国外钻井技术,1997,12(6):1-8
    [13]李常茂,耿瑞伦.关于天然气水合物钻探的思考[J].探矿工程,2000,29(3):5-8
    [14]李常茂,左汝强.天然气水合物钻采与环境保护[J].探矿工程(岩土钻掘工程),2002,(3):1-3
    [15]蒋国盛,王达,汤凤林,等.天然气水合物的勘探与开发[M].武汉:中国地质大学出版社,2002:65-96
    [16]叶建良,殷琨,蒋国盛,等.天然气水合物钻井的关键技术与对策[J].探矿工程,2003,(5):45-48
    [17]史斗等.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992,1-93
    [18]Sloan, E.D.Clathrate hydrates of natural gases [M].New York:MarcelBecker Inc.,1990, 1~641
    [19]蒋国盛,王荣璟,黎忠文,等.天然气水合物的钻进过程控制和取样技术[J].探矿工程,2001(3):33-35
    [20]Rodger, The stability of gas hydrates[J].Phys.Chem,1990(94):6080
    [21]Hendriks, E.M., B.Edmonds, R.A.S.Moorwood, Gas Hydrate StructureStability in simple and mixed hydrates[J].Fluid Phase Equilibrium,1996,117:193~200
    [22]John, Carroll.Natural gas hydrates[M].Gas Liquid Engineering, Ltd,2009,17~49
    [23]郭威.天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究.吉林大学博士论文.21-24
    [24]张绍槐,张洁.21世纪中国石油钻井技术发展战略研究[J].探矿工程.2001.4:1-5
    [25]高杭,刘海涛.钻井液冷却系统概念设计[J].石油矿场机械.2007,36(6),31-32
    [26]赵江鹏,孙友宏,郭威.钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J].探矿工程(岩土钻凿工程),2010,37(9):1-5
    [27]吴景华,云希斌.地热开发应用及效益评价[J].长春工程学院学报(自然科学版).2003,4(1):31-34
    [28]S Saito.The Drilling Experience of K6-2, the High-Temperature and Crooked Geothermal Well in Kakkonda, Japan [J].Energy Resources Technology,1993,2, vol 115:151~158.
    [29]Seiji Saito, Sumio Sakuma. Frontier Geothermal Drilling Operations Succeed at 500℃ BHST[J].SPE Drilling & Completion.2000,15 (3):152~161
    [30]Yanaqisawa.N, Uchida.T, Akaku.K, Kamenosono.H, Miyazaki.S, Doi.N.Investigation of the Kakkonda deep geothermal reservoir and side~track drilling of WD~1[C].Proceedings of the 19th New Zealand geothermal workshop 1997:69~74
    [31]Tobben, Bernardus, Johannes. Apparatus for the Cooling of Drilling Liquids[P].EUROPE, EP1558020B1.Dec.18,2008.
    [32]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987,251-323
    [33]张也影.流体力学(第二版)[M].北京:高等教育出版社,1999,239-293
    [34]张奕,郭恩震.传热学(第二版)[M].南京:东南大学出版社,2004,86-147
    [35]张正端,邵洪福等.换热器及其计算基础知识[M].北京:化学工业出版社,1980:7
    [36]尾花英朗著,徐忠权译.热交换器设计手册[M].北京:石油工业出版社,1984-350-352
    [37]邱树林,钱滨江.换热器原理·结构·设计[M].上海:上海交通大学出版社,1990:1-77
    [38]李国圣,孙友宏,郭威.天然气水合物钻井泥浆冷却系统的设计及现场应用[J].探矿工程(岩土钻掘工程),2011,38(2)8-11
    [39]潘继红,田茂试.管壳式换热器的分析与计算[M].上海:科学出版社,1996:17-19
    [40]姚平经,郑轩荣.换热器系统的模拟、优化与综合[M].北京:化学工业出版社,1992:23-32
    [41]李进良,李承曦,.胡仁喜.精通flunt6.3流场分析[M].北京:化学工业出版社,2009:12-106
    [42]卢振权,祝有海,张永勤,等.青海祁连山冻土区天然气水合物资源量的估算方法.[J]2010,29(9):1311-1317
    [43]祝有海,张永勤,文怀军,等.祁连山冻土区天然气水合物及其基本特征[J].地球学报,2010,21(1),10-12
    [44]冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):307-314.
    [45]符俊辉,周立发.南祁连盆地石炭—侏罗纪地层区划及石油地质特征[J].西北地质科学,1998,19(2):47-54.
    [46]符俊辉,周立发.南祁连盆地三叠纪地层及石油地质特征[J].西北地质科学,2000,21(2):64-72.
    [47]文怀军,鲁静,尚潞君.青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J].中国煤田地质,2006,18(5):19-21.
    [48]周幼吾,郭东信,邱国庆.中国冻土[M].北京:科学出版社,2000:329-353
    [49]覃耘,张士科等.换热器实用技术问题[M].北京:煤炭工业出版社,1991,364-383
    [50]靳明聪,程尚模,赵永湘.换热器[M].重庆:重庆大学出版社,1990,5
    [51]柯如柏.套管式换热器的强化分析[J].化学工程师,1988:20-23
    [52]彭洁.螺旋槽管换热过程的三维数值模拟[D].燕山大学硕士学位论文:2006.2
    [53]王涛,程林.内管纵向敷肋时套管式换热器传热研究[J].水动力学研究与进展,1996,11(6):707-711
    [54]朱道义,孙红,吴洪特.套管换热器的强化效果试验研究[J].长江大学学报(自然科学版),2010,7(3):197-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700