用户名: 密码: 验证码:
Mn改性的Pd/Ba/Al催化剂上NO_x存储—还原反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx存储-还原(NSR)技术是一种可以脱除贫燃尾气中NOx的有效方法,最早由日本丰田汽车公司提出,近年来受到人们的广泛关注和重视。现阶段,NSR催化剂的研究主要集中在Pt-Ba-Al体系,该类催化剂在高温(>350℃)具有较好的脱除效率,但当温度降低时,贫燃阶段NO、不能有效的在催化剂上存储,从而降低了催化剂的NOx脱除效率。
     本论文采用等体积浸渍法制备了Pd/Mn/Ba/Al系列催化剂,考察了催化剂在不同温度点的存储活性及存储-还原循环中NO、的脱除效率,并用DRIFTS、TPD、TPSR等方法对表面吸附物种的形成及吸附物种的反应情况进行了研究,主要研究内容和实验结果如下:
     1.研究了NSR催化剂在不同温度点的NOx存储性能,结果表明:当Mn单独作为NOx存储组分时,其低温(30~300℃)具有较好的NOx存储能力,但400℃以上的NOx存储能力急剧下降。当Ba作为NOx存储组分时,NOx存储量随温度上升呈现:先上升再下降的趋势,并在400℃,达到最大NOx存储量。当Mn和Ba共同作为存储组分时,Mn的加入显著提高了传统Pd/Ba/Al催化剂低温段的NOx存储量,并在300℃至400℃的宽温度区间获得了850μmol·g-1的NOx存储量。
     2.研究了NOx在Pd/Ba/Al、Pd/Mn/Al和Pd/Mn/Ba/Al催化剂上的形成物种,结果表明:亚硝酸盐和硝酸盐是NOx在催化剂上存储的主要形式。随着吸附温度的升高(>300℃),硝酸盐为催化剂表面的主要NOx存储物种。在吸附温度为300℃时,Mn上的硝酸盐已经分解,故不能直接提供NOx存储位,但与Ba的协同作用,却促进了Pd/Mn/Ba/Al催化剂表面在低温(<400℃)硝酸盐的生成。
     3.以NOx吸附后在惰性气氛中的程序升温研究为手段,考察了Pd/Ba/Al、Pd/Mn/Al和Pd/Mn/Ba/Al催化剂上吸附的NOx物种的热稳定性,结果表明:亚硝酸盐的热稳定性较差,而以硝酸盐形式存储的NOx的热稳定性较高。由于存储在Mn上的NOx主要以亚硝酸盐形式存在,故热稳定性较差,存储在Ba上的硝酸盐的分解温度较高(>500℃);由于Mn和Ba的协同作用,使得存储在Pd/Mn/Ba/Al催化剂上的硝酸盐的分解温度略有降低。
     4.通过对比Mn/Ba/Al、Pd/Ba/Al、Pd/Mn/Al和Pd/Mn/Ba/Al催化剂吸附NOx后在5% H2/Ar气氛中的TPSR结果表明:Mn对催化NOx还原的能力较差,但Pd的加入能显著降低NOx的还原温度。这对于催化剂在NOx存储-还原循环中的还原再生过程具有重要意义。
     5.考察了Pd/Ba/Al、Pd/Mn/Al和Pd/Mn/Ba/Al催化剂上NOx存储-还原循环脱除活性,结果表明:Pd/Ba/Al催化剂活性温度窗口很窄,NOx脱除效率仅在400℃较高,达到62%;Pd/Mn/Al催化剂的NOx脱除效率整体较低,但在300℃~400℃温度范围可获得30%的NOx脱除率;由于Mn的加入,Pd/Mn/Ba/Al催化剂的低温活性较Pd/Ba/Al催化剂有显著提高,300℃时,NOx脱除率提高了3倍多,由16%提高至53%。
NOx storage-reduction (NSR) technology can effectively remove NOx in the lean burn conditions, which was first proposed by the Toyota Corporation, and caused wide public attention. At present, the research on the catalysts mainly focus on the Pt-Ba-Al System. This kind of catalyst had excellent activity above 350℃, but when the temperature decreased, NO can not be effectively stored on the catalyst in the lean phase, thereby reduced the NOx removal efficiency of the catalysts.
     The performance of NOx storage capacity (NSC) and the activity of storage-reduction over a series of Pd/Mn/Ba/Al catalysts were investigated at different temperatures. The Pd catalysts were prepared by incipient impregnation and characterized by DRIFTS、TPD and TPSR. Some meaningful results were got as follows:
     1). The NOx storage capacity was studied over a series of catalysts at different temperature, it is found that the storage capacity of the catalyst is high at 30-300℃and decrease sharply at 400℃when Mn used as the storage component only; the NOx storage capacity first increased and then decreased with increasing temperature, and reached the maximum value at 400℃, when the Ba uesd as the storage component; The addition of Mn can significantly improved the storage activity of the traditional catalyst Pd/Ba/Al at low temperature, and the NOx storage capacity reached 850μmol·g-1 at 300-400℃, when the Mn and Ba used as the storage components together.
     2). Study of the formed species of NOx on the Pd/Ba/Al、Pd/Mn/Al and Pd/Mn/Ba/Al catalysts, it is found that the nitrite and nitrate were the main species on the catalysts.As the adsorption temperature up 300℃, the nitrate is the main NOx storage species, but the nitrate on the Mn was unstable and Mn couldn't provide the storage spaces at this temperature. However, the synergistic effect of Mn and Ba could promote the nitrate formed on the Pd/Mn/Ba/Al catalyst at the low temperature (<400℃).
     3). Study of the thermal stability of NOx species on the Pd/Ba/Al、Pd/Mn/Al and Pd/Mn/Ba/Al catalysts through the NOx-TPD, it is found that the thermal stability of nitrite is poor and nitrate is better. The nitrite is the main species on Mn and has poor thermal stability, the decomposition temperature of nitrate on the Ba was higher (> 500℃). The synergistic effect of Mn and Ba could promote the decompostion and decreased the decomposition temperature of nitrate on the Pd/Mn/Ba/Al catalyst.
     4). Compared the NOX reduction activity of Mn/Ba/Al、Pd/Ba/Al、Pd/Mn/Al and Pd/Mn/Ba/Al catalysts, addition of Mn reduce the capacity of NOx reduction by H2-TPSR. But the reduction temperautre significantly decreased through adding Pd. This is important for reduction and regeneration of catalysts in the NOX storage-reduction (cycling).
     5). The temperature window of activity on the Pa/Ba/Al catalyst was narrow, the NOX conversion reached 62% at 400℃. The total NOX conversion was lower over the Pd/Mn/Al catalyst, reached 30% at 300-400℃. Compared to Pd/Ba/Al, the NOX conversion of the PMBA catalyst is three times at 300℃, from 16% to 53%.
引文
[1]林平.汽车史话:汽车发展史[M].北京:电子工业出版社,2005.
    [2]王建昕,傅立新,黎维彬,等.汽车尾气污染治理及催化转化器[M].北京:化学工业出版社,2000.
    [3]Obuchi A, Kaneko I, Oi J, et al. A practical scale evaluation of catalysts for the selective reduction of NOx with organic substances using a diesel exhaust [J]. Applied Catalysts B,1998,15(1-2):37-47.
    [4]Iwamoto M, Yahiro H, Shin H K, et al. Performance and durability of Pt-MFI zeolite catalyst for selective reduction of nitrogen monoxide in actual diesel engine exhaust [J]. Applied Catalysts B,1994,5(1-2):1-6.
    [5]Ciambelli P, Corbo P, Gambino M,et al. Lean NOx reduction CuZSM5 catalysts: Evaluation of performance at the spark ignition engine exhaust [J]. Catalysis Today,1995,26 (1):33-39.
    [6]梁炜.内燃机[M].北京:内燃机杂志社,2000.
    [7]Hadded O, Strokes J, Grigg W D.国办内燃机[M].1996(5):45-55.
    [8]KasPar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way eatalysis [J]. Catal Today,1999,50(2):285-298.
    [9]朱盛镭,马赛赛.排放法规变化与汽车供油系统对策[J].上海汽车.1997,6:25.
    [10]GB 14761.1-93.轻型汽车排气污染物排放标准.
    [11]GB 18352.2.轻型汽车排气污染物排放标准.
    [12]蔡国钦.发动机稀燃技术简介[J].世界汽车,2002,12:52.
    [13]白木,周洁.现代发动机稀燃技术[M].山东农机,2003,3:13-15.
    [14]刘天宇,王海,轿车汽油机实现稀燃及降低NOx排放的关键技术[J].汽车技术,2005,2:9-13.
    [15]程昊.稀燃发动机尾气NOx存储-还原催化剂研究[D].博士学位论文,中国科学院研究生院,2004,3-4.
    [16]Koitsakis G C, Stamatelos A M. Catalytic automotive exhaust aftertreatment [J], Program Energy Combust Science,1997,23:1-39.
    [17]Gliek H, Klien J J, Squire W. Single-Pulse shock tube studies of the kinetics of the reaction N2+O2=2NO between 2000-3000 K [J].J Chem Phys,1957,27:850-857.
    [18]Amirnami A,Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum [J]. Catal,1973,30:55-56.
    [19]Amirnazmi A,Boudart M. Decomposition of nitric on platinum [J].J Catal,1975,39: 383-394.
    [20]Pancharatnum S, Lim K J, Mason D M. The decomposition of nitric oxide on a heated platinum wire [J].Chem Eng Sci,1975,30:781-787.
    [21]Ogata A,Obuchi A, Mizumo K, et al. Enhancement effect of Mg2+ ion on direct nitric oxide decomposition over supported palladium catalysts[J]. Appl Catal,1990,65: L.11-L15.
    [22]Ogata A, Obuchi A, Mizumo K, et al. Active sites and redox properties of supported palladium catalysts for nitric oxide direct decomposition [J].J Catal,1993,144: 452-459.
    [23]Iwmaoto M, Maruyama K, Yamazoe N, et al.Activiyt of copper(Ⅱ)-exchanged Y-type zeolites in the catalytic decomposition of niortgen monoxide [J].J Chem Soe Chem Commun,1978,1058-1059.
    [24]Iwamoto M, Furukawa H,Mine Y, et al. Copper (Ⅱ) ion-exchanged ZSM-5 zeolites as highly active catalystic for direct and continuous decomposition of nitrogen monoxide [J].J Chem Soc, Chem Commun,1986,1272-1273.
    [25]Valyon J, Hall W K, Effects of Reduction and Reoxidation on the Infrared Spectra form Cu-Y and Cu-ZSM-5 Zeolites [J].J Phys Chem,1993,98:5721-5727.
    [26]Wichterlova B, Dedecek J, Vondrova A. Identification of Cu sites in ZSM-5 active in NO decomposition [J].J Phys Chem,1995,99:1065-1067.
    [27]Schay Z, Knozinger H, Guczi L, et al. On the mechanism of NO decomposition on CuZSM-5 catalysts [J].Appl Catal B,1998,18:263-271.
    [28]Goralskijr C T, Schneider W F. Analysis of the thermodynamic feasibility of NOx decomposition catalysis to meet next generation vehicle NOx meissions standards [J].Appl Catal B,2002,37:263-277.
    [29]Winter E R. The Catalic decomposition of nitric oxide by metallic oxides [J].J Catal,1971,22:158-170.
    [30]Yasuda H, Mizumo N, Misono M. Role of copper in the direct decomposition of nitrogen monoxide over well characterized La2xAxCu1-yByO4 [J]. J Chem Soc Chem Common,1990,1094-1095.
    [31]Morikawa S, Yoshida H, Takahosh T,et al. Improvement of V2O5-TiO2 catalyst for NOx reduction with NH3 in flue gases [J].Chem Lett,1981,251-254.
    [32]Seker E, and Gulari E. Activity and N2 selectivity of sol-gel prepared Pt/alumina catalysts for selective NOx reduction [J].J Catal,2000,194(1):4-13.
    [33]Xin M, Hwang I C, Woo S I. In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5 [J].Catal Today,1977,38(2):187-192.
    [34]Burch R, Watling T C. The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by G3H6 under lean-burn conditions [J].Appl Catal B,1997,11(2):207-216.
    [35]Burch R, Scire S. Selective catalytic reduction of nitric oxide wit hethane and methane on some metal exchanged ZSM-5 zeolites [J].Appl Catal B,1994,3(4): 295-318.
    [36]Meunier F C,Zuzaniuk V,Breen J P, et al. Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study [J]. Catal Today,2000,59(3-4):287-304.
    [37]Haneda M, Kintaichi Y, Bion N, et al. Mechanistic study of the effect of coexisting H2O on the selective reduction of NO with propene over sol-gel prepared In2O3-Al2O3 catalyst [J].Appl Catal B,2003,42(1):57-68.
    [38]Lee J H, Yezerets A, Kung M C, et al. Hydrocarbon reaction pathway in selective NO reduction over a bifunctional SnO2/Al2O3 catalyst [J].Chem Commun,2001,15:1404-1405.
    [39]Shimizu K, Kawabata H, Satsuma A, et al. Role of acetate and nitrates in the selective catalytic reduction of NO by propene over alumina catalyst as investigated by FTIR [J].J Phys Chem B,1999,103,25:5240-5245.
    [40]Lobree L J,Aylor A W, Reimer J A, et al. Role of cyanide species in the reduction of NO by CH4 over Co-ZSM-5 [J]. J Catal,1997,169(1):188-193.
    [41]Aylor A W, Lobree LJ, Reimer J A, et al. NO adsorption, desorption, and reduction by CH4 over Mn-ZSM-5 [J].J Catal,1997,170(2):390-401.
    [42]Lobree L J, Hwang I, Reimer J A, et al. An in situ infrared study of NO reduction by C3H8 over Fe-ZSM-5 [J]. Catal Lett,1999,63(3-4):233-240.
    [43]Lobree L J, Aylor A W, Reimer J A, et al.NO reduction by CH4 in the presence of O2 over Pd-H-ZSM-5 [J].J Catal,1998,181(2):189-204.
    [44]Hao J, Liu Z, Fu, Li J, et al. Single step sol-gel made SnO2/Al2O3 catalyst for selective reduction of NOx under oxidizing conditions,Proceed-ings of the 5th Seminar of JSPS-MOE Core University Program on Urban Environment, Shanghai, China,2003, Oct 30-31.
    [45]Li J, Hao J, Fu L, et al.The activity and characterizationof sol-gel Sn/Al2O3 catalyst for selective catalytic reduction of NOx in the presenceof oxygen [J]. Catal. Today,2003,90, (3-4):215-221.
    [46]Shibata J,Shimizu K, Satsuma A, et al. Influence of hydro-carbon structure on selective catalytic reduction of NO by hydrocarbons over Cu-Al2O3 [J]. Appl Catal, B,2002,37(3):197-204.
    [47]Meunier F C, Ukropec R, Stapleton C, et al. Effect of thesilver loading and some other experimental parameters on the selective reduction of NO with C3H6 over Al2O3 and ZrO2-based catalysts [J].Appl Catal B,2001,30(1-2):163-172.
    [48]Chen L, Horiuchi T,Mori T. On the promotional effect of Sn in Co-Sn/Al2O3 catalyst for NO selective reduction [J]. Catal Lett,2001,72(1-2):71-75.
    [49]Haneda M, Kintaichi Y,Hamada H. Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene [J]. Appl Catal B,1999,20(4):289-300.
    [50]Kung M C, Park, P W, Kim, D W, et al. Lean NOx catalysis over Sn/g-Al2O3 catalysts [J]. J Catal,1999,181(1):1-5.
    [51]He H, Zhang C B, Yu Y B. A comparative study of Ag/Al2O3 and Cu/AlO3 catalysts for the selective catalytic reduction of NO by C3H6 [J]. Catal Today,2004,90(3-4):191-197.
    [52]Li N, Wang A Q, Tang J E, et al. NO reduction by CH4 in the presence of excess O2 over Co/sulfated zirconia catalysts [J].Appl Catal B,2003,43(2):195-201.
    [53]Amin N S, Tan E F, Manan Z A. SCR of NO by C3H6:comparison between Cu/Cr/CeO2 and Cu/Ag/CeO2 catalysts [J].J Catal,2004,222(1):100-106.
    [54]Shichi A, Katagi K, Satsuma A, et al. Influence of intracrystalline diffusion on the selective catalytic reduction of NO by hydrocarbon over Cu-MFI zeolite [J].Appl Catal B,2002,24(2):97-105.
    [55]Mosqued A, Jimnez B I, Jentys A, Seshan K, et al. Reduction of nitric oxide by propane and propane on Ni-exchanged mordenite [J].Appl Catal B,2003,43 (2):105-115.
    [56]KubackA A, Janas J, Wloch E, et al. Selective catalytic reduction of nitricx oide over zeolite catalysts in the presence of hydrocarbons and the excess of oxygen [J]. Catal today,2005,101(2):139-145.
    [57]张惠,方和良,李伟等.H-USY负载MnOx催化剂上CH4选择催化还原NOx性能的研[J].高校化学工程学报,2006,20(005):820-824.
    [58]Prasad R,Kennedy L A, Ruckenstein E. Catal Rev Sci Eng,1984,26:1.
    [59]Landau D,Arlington U S A Patent 4588377,1985.
    [60]Parkinson J, Chem Eng News,1981,88:51.
    [61]Salasc S,Skoglundh M, Fridell E. A comparison between Pt and Pd in NOxstorage catalysts [J]. Applied Catalysis B,2002,36:145-160.
    [62]Amberntsson A, Skoglundh M, Erik Fridell,et al.Sulfur deactivation of NOxstorage catalysts:influence of exposure conditions and noble metal [J].J Catalysis, 2003,217:253-263.
    [63]Amberntsson A, Fridell E, Skoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst [J].Applied Catalysis B:Environmental,2003,46:429-439.
    [64]Toops T, Smith D, PartridgeW,et al. Proceedings of the Third Joint Meeting of the U S Sections of the Combustion Institute,2003, accepted for publication.
    [65]Forzatti P, Castoldi L, Nova I, et al. NOx_removal catalysis under lean conditions [J]. Catal Today,2006,117:316-320.
    [66]Nova I.Castoldi L, Lietti L, et al.NOx adsorption study over Pt-Ba/alumina catalysts:FT-IR and pulse experiments [J].J Catal,2004,222:377-388.
    [67]Nova I, Castoldi L, Prinetto F, et al. A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system [J].Top Catal,2004,30(31):181-186.
    [68]Epling W S, Yezerets A,Currier N W. The effects of regeneration conditions on NOx_and NH3_release from NOx_storage/reduction catalysts [J].Appl Catal B,2007,74:117-129.
    [69]Liu Z, James A, Anderson. Influence of reductant on the thermal stability of stored NOx in Pt/Ba/Al2O3 NOx storage and reduction traps [J]. J Catalysis,2004,224:18-27.
    [70]Scholz C M, Maes B H, et al. Influence of reducing agent (CO, H2, and C2H4)and of H2O on NOx reduction on a Pt-Ba/Al2O3 catalyst [J]. Applied Catalysis A:General,2007,332: 1-7.
    [71]Abdulhamid H, Fridell E,Skoglundh M. Influence of the type of reducing agent (H2, CO, C3H6, C3H8)on the reduction of stored NOx in a Pt/BaO/Al2O3 modelcatalyst [J].Top in Catalysis,2004,30-31:161-168.
    [72]Szailer T, Kwak J, Kim H. Reduction of stored NOx on Pt/Al2O3 andPt/BaO/Al2O3 catalysts with H2 and CO [J].J Catalysis,2006,239:51-64.
    [73]Ohtsuka H, Tabata T.Roles of palladium and platinum in the selective catalytic reduction of nitrogen oxides by methane on palladium-platinum-loaded sulfated zirconia [J].Appl Catal B,2001,29(3):177-183.
    [74]Ohtsuka H. The selective catalytic reduction of nitrogen oxides by methane on noble metal-loaded sulfated zirconia [J].Appl Catal B,2001,33(4):325-333.
    [75]Amberntsson A, Fridell E, Skoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur torelance of a barium based NO, storage catalyst [J],Appl Catal B,2003,46(3):429-439.
    [76]Salasc S, Skoglundh M, Fridell E.A comparison between Pt and Pd in NOx storage catalysts [J].Appl Catal B,2002,36(2):145-160.
    [77]Kobayashi T, Yamada T, Kayano K. Study of NOx trap reaction by thermodymic calculation [P]. SAE paper,1997,970745.
    [78]Huang H,Long R, Yang R. The promoting role of noble metals on NOx storage catalyst and mechanistic study of NOx storage under lean-burn conditions [J], Energy&Fuel, 2001,15(1):205-213.
    [79]Olsson L, Persson H, Fridell E, et al. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3 [J]. J Phys Chem B,2001,105(29):6895-6906.
    [80]Olsson L, Fridell E.The influence of Pt oxide formation and Pt dispersion on the reactions NO2=N0+1/202 over Pt/Al203 and Pt/BaO/Al2O3 [J]. J Catal,2002,210(2):340-353.
    [81]Piacentini M, Maciejewski M, Baiker A. Pt-Ba/alumina NOx storage-reduction catalysts: influence of Ba loading on NOx storage behavior [J]. Appl Catal B,2005,60:265-275.
    [82]Corbos E C, Elbouazzaoui S, Courtois X, et al. NOx storage capacity, SO2 resistance and regeneration of Pt/(Ba)/CeZr model catalysts for NOx-trap system [J].Top Catal, 2007,42-43:9-13.
    [83]Kobayashi T, Yamada T, Kayano K. Study of NOx trap reaction by thermodymic Calculation [P], SAE paper,1997,970745.
    [84]Dou D, Balland J. Impact of alkali metals on the performance and mechanical properties of NOx adsorber catalysts [P].SAE Paper,2002,2002-01-0734.
    [85]Dou D, BallandJ. Impact of alkali metals on the performance and mechanical properties of NOx adsorber catalysts[P], SAE Paper,2002,2002-01-0734.
    [86]Hodjati S,Petit C, Ptichon V, et al. Absorption/desorption of NOx process onperovskites:Nature and stability of the species formed on BaSnO3 [J]. Appl Catal B,2000,27(2):117-126.
    [87]Hodjati S, Vaezzadeh K,Petit C, et al. Absorption/desorption of NOx process onperovskite:performances to remove NOx from a lean exhaust gas [J].Appl Catal B,2000,26(1):5-16.
    [88]Westerberg B, Fridell E. A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system [J].J Mol Catal A,2001,165:249-263.
    [89]Casapu M,Grunwaldt J D, Maciejewski M, et al. Formation and stability of barium aluminate and cerate in NO., storage-reduction catalysts [J].Appl Catal B,2006, 63:232-242.
    [90]Takahashi N, Suda A, Hachisuka I, et al. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides [J], Appl Catal B,2007,72:187-195.
    [91]Yamamoto K, Kikuchi R,Takeguchi T, et al.Development of NO sorbents tolerant to sulfur oxides [J]. J Catal,2006,238:449-457.
    [92]Fornasari G, Trifiro F, Vaccari A, et al. Novel low temperature NOx__storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds [J]. Catal Today,2002,75:421-429.
    [93]Corbos E C, Courtois X, Bion N, et al. Impact of the support oxide and Ba loading on the sulfur resistance and regeneration of Pt/Ba/support catalysts [J]. Appl Catal B,2008,80:62-71.
    [94]Machida M, Uto M, Kurogi,et al. MnOx-CeO3 Binary Oxides for Catalytic NOx Sorption at Low Temperatures Sorptive Removal of NO* [J].Chem Mater,2000,12:3158-3164.
    [95]Costa C N.Efstathiou A M. Chem Lett,2004,2:55-58.
    [96]Zou Z Q, Meng M, Zhou X Y,et al. Catal. Lett, http://dx.doi.org/10.1007/s10562-008-9775-z.
    [97]Matsumoto S, Ikeda Y, Suzuki H, et al. N0x storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning [J].Appl Catal B,2000, 25(2-3):115-124.
    [98]Hachisuka I, Hirata H, Ikeda Y, et al. Deactivation mechanism of NOx storage-reduction catalyst and improvement of its performance [P].SAE Paper,2000,2000-01-1196.
    [99]Sedlmair C, Seshan K,Jentys A,et al. Studies on the deactivation of N0x storage-reduction catalysts by sulfur dioxide [J]. Catal Today,2002,75 (1-4):413-419.
    [100]Yamazaki K, Suzuki T, Takahashi N, et al. Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing condition in the presence of S02 [J].Appl Catal B,2001,30(3-4):459-468.
    [101]David J, Elodie F, et al. Catalytic decomposition/regeneration of Pt/Ba (NO3)2 catalysts:NOx_storage and reduction [J]. Appl Catal B,2003,45:147-159.
    [102]Sedlmair C, Seshan K, Jentys A, et al. elementary steps of NOx__adsorption and surface reaction on a commercial storage-reduction catalyst [J].J Catalysis,2003,214:308-316.
    [103]Westerberg B, Fridell E.A transient FTIR study of species formed during NOx_storage in the Pt/BaO/Al2O3_system [J]. Molecular Catalysis A:Chemical,2001,165:249-263.
    [104]Poulston S.Rajaram R R.Regeneration of NO, trap catalysts [J]. Catal Today,2003,81:603-610.
    [105]Yentekakis I.Lambert R, Tikhov M, et al. Promotion by Sodium in Emission Control Catalysis:A Kinetic and Spectroscopic Study of the Pd-Catalyzed Reduction of NO by Propene [J].J Catal,1998,176:82.
    [106]Yentekakis I.Lambert R,Konsolakis M, et al.Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]Appl Catal B,1998,18:293-305.
    [107]Konsolakis M, Yentekakis I.The Reduction of NO by Propene over Ba-Promoted Pt/ y-Al2O3_Catalysts [J].J Catal,2001,198:142-150.
    [108]Lang N, Holloway S, Norskov.J Surf Sci,1985,150,24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700