用户名: 密码: 验证码:
猪血凝性脑脊髓炎病毒经消化道感染的神经径路传播机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪血凝性脑脊髓炎是由血凝性脑脊髓炎病毒(Hemagglutinating encephalomyelitis virus, HEV)引起猪的一种急性、接触性传染病。近年来,该病的发生呈上升趋势,而国内外有关该病发病机制的研究报道较少。为了研究HEV在感染仔猪体内嗜神经侵袭途径,本课题拟模拟HEV的消化道感染途径,通过口服的方式给仔猪接种HEV,之后分阶段处死仔猪,采集病料并做相应处理,一部分用荧光定量RT-PCR检测HEV在人工感染仔猪体内的分布规律;另一部分用间接免疫组织化学(Immunohistochemistry,IHC)方法检测HEV在不同时间段的传播路径,以研究HEV通过消化道感染仔猪的神经径路传播机制。
     结果表明,仔猪经口服方式接种HEV后,出现与自然感染猪一致的临床表现及病理变化。IHC实验结果显示,HEV接种仔猪后第1天,抗原阳性信号首先出现于小肠黏膜上皮细胞的胞浆中和胃壁神经丛内;第2天,在胸椎、腰椎脊髓背角感觉神经元细胞胞浆出现阳性信号;第3天,能够在颈椎脊髓、延髓和脑桥的神经元细胞中观察到抗原阳性信号出现,随后抗原阳性信号蔓延至大脑皮层的锥体细胞中;第4天,小脑浦肯野氏细胞层也发现有抗原阳性信号出现。荧光定量RT-PCR结果显示,仔猪接种HEV后,随感染时间的不同,在不同组织器官中的病毒载量存在一定差异,且在不同的时间点,病毒在同一组织器官中的载量也不同。HEV感染仔猪后第1天,在胃和小肠检测到一定量的病毒,之后病毒在脑、脊髓等神经系统的组织器官中分布,并且具有较高载量,随着感染时间延长,在心、肝、脾、肺、肾中均能检测到HEV。
     本课题的研究结果说明,HEV通过消化道途径感染仔猪后,病毒主要沿神经途径传播,由脊髓传入脑中,并主要分布于感染仔猪的中枢神经系统(Central nervous system,CNS),具有典型的嗜神经特性,感染后期,HEV可以通过CNS传播到其他的组织器官中,使感染宿主成为病毒携带者和散毒者,这将为该病发病机制的研究提供一定的实验依据。
Porcine hemagglutinating encephalomyelitis (PHE), caused by hemagglutinating encephaomyelitis virus (HEV) has being increasing in recent years,but there was little newsreport about the research on the pathogenic mechanism.In order to study the neural transmission mechanism of Hemagglutinating encephalomyelitis virus, some colostrum-deprived pigs were inoculated with HEV strain 67N at the day of birth by the oral route,then they were sacrificed at 23 and 4 days postinfectionand tissues from stomachsmall intestine,heart,liver,spleen,lung,kidney,spinal cord and brain were gathered. Part of the tissues was stored in -80℃. Fluorescent quantitation RT-PCR method was used to evaluate the distribution of viral RNA in the tissues.and another part was soaked in formaldehyde,the method of immunohistochemical Staining (IHC) was applied to detceted the invading process of virus antigen.
     The results showed that pigs can be experimentally infected with HEV.and causes encephalomyelitis in suckling piglets. The result of IHC showed that virus antigen were first detected in the epithelial cell of small intestine and stomach nerve plexus on day 1,then virus antigen spreaded into sensory neuron cells in the dorsal horns of the thoracic vertebra spinal cord and lumbar vertebra spinal cord on day 2. On day 3, the virus was found in the neurons of cervical spinal cord,medulla oblongata and pons, antigen-postive cells were also spreaded into pyramidal neurons in cerebral cortex later, on day 4, purkinje cells were antigen-postive. The result of SYBR Green I real-time PCR showed that the virus load differed in different organ in the same day postinfection; and the dynamic changes differed in the same organ in different days postinfection. On day 1,the virus can be detected in small intestine and stomach.then the virus load went up in the tissues of brain and spinal cord.At last the virus can be detected widely in heart,liver.spleen,lung,kidney.
     In all.HEV spreaded along the neural ways after inoculated into the pigs orally.and can spreaded form spinal cord to brain.and mainly distributed in CNS, neuronophagia could be observed in cerebrum,On later period,hev transmited form CNS to the other organs,and the infected host became a virus carrier and virus diffuser.This research can provid some theoretical evidences on the pathogenic mechanism of HEV.
引文
[1]候云德主编.分子病毒学[M].北京:学苑出版社.1990:381-394.
    [2]殷震.刘景华主编.动物病毒学(第二版)[M].北京科学出版社.1997:681-688.
    [3]徐耀先,周晓峰,刘立德.分子病毒学[M].湖北科学技术出版社.2000:337-343.
    [4]Delmas B, Gelfi J, and Laude H. Antigenic Structure of Transmissible Gastroenteritis Virus [J]. Journal of Virol.1986,67:1405-1418.
    [5]Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion [J]. Virol.1995, Sep;69(9):5269-5277.
    [6]Kim L, Hayes J, Parwani P, et al. Molecular Characterization and Pathogenesis of Transmissible Gastroenteritis Virus (TGEV) and Respirartory Coronavirus (PRCV) Field Isolates Co-circulating In a Swine Herd. [J] Arch Virology.2000,145:1133-1147.
    [7]Nelson GW, Stohlman SA. Tahara SM. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA [J]. J Gen Virol.2000, Jan;81(Pt 1):181-8.
    [8]Pyrc K, Jebbink MF, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63 [J]. Virol J.2004 Nov 17;1(1):7.
    [9]Bingham R W, Madge M H. Tyrrell D A. Haemagglutination by avian infectious bronchitis virus-a coronavirus [J]. J Gen Virol,1975,28:381-390.
    [10]Schultze B, Enjuanes L, Cavanagh D, et al. N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus [J]. Adv Exp Med Biol,1993,342:305-310.
    [11]Mengeling WL, Boothe AD,Ritchie AE. Characteristics of a coronavirus(strain 67N) of pigs.Am [J] Vet Res 1972,33:297-308.
    [12]GreigAS, Bouillant AMP Studies on hemagglutination phenomenon of hemagglutinating encephalomyelitis Virus (HEV) of pigs.Can [J] Comp Med.1972,36:366-370.
    [13]Greig AS,Girard A. Encephalomyelitis of swine caused by a hemagglutinating virus.V.Response to metabolic inhibitors and other chemical compounds.Res Vet Sci 1969, 10:509.
    [14]Sasseville AM.Boutin M.Gelinas AM, et al. Seguence of the 3-terminal end of the genome of porcine hemagglutinating encephalomyelitis Virus:Comparison with other hemagglutinatingcoronaviruses. [J] Gen Virol 2002,83:2411-2416.
    [15]Schultze B, Herrlerg. Recognition of N-acetyl-9-o-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis Virus:Adv Exp Med Biol 1993, 342:299-304.
    [16]Dea S, Tijssen P. Detection of turkey enteric coronavirus by enzyme-linked immunosorbent assay and differentiation form other coronaviruses.Am J Vet Res 1989,50:226-231.
    [17]Greig AS. A hemagglutinating virus producing encephalomyelitis in bady pigs.Can [J] Comp 1962, Med26:49-56.
    [18]Lucas MH.Naphtine P. Fluorescent antibody technigue in the study of three porcine viruses. [J] Comp Pathol 1971.81:111-117.
    [19]Hirano N,Ono K,Takassawa H. Replication and plaque formation of swine hemagglutinating encephalomyelitis Virus(67N) in swine cell line SK-K culture. [J] Virol Methods 1998, 27:91-100.
    [20]Delmas B, Laude H. Carbohydrate-induced conformational changes strongly modulated the antigenicity of coronavirus TGEV glycolproteins S and M [J]. Virus Res,1991,20:107-120.
    [21]Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression [J]. J Virol,1990,64 (11):5367-5375.
    [22]Hasoksuz M, Sreevatsan S, Cho K O, et al. Molecular analysis of the Sl subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates [J]. Virus Res,2002,84: 101-109.
    [23]Mounir S, Talbot. Molecular characterization of the S protein gene of human coronavirus OC43 [J]. Gen Virol,1993.74:1981-1987.
    [24][41] Motokawa K, Hohdatsu T, Aizawa C, et al. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type Ⅰ [J]. Arch Virol,1995,140 (3):469-80.
    [25]Matsuyama S, Taguchi F. Receptor-induced conformational changes of routine coronavirus spkie protein [J]. J Virol,2002,76 (23):11819-11826.
    [26]Li W, Moore MJ, Vasilieva N, et al. Angiotensin converting enzyme is a functional receptor for the SARS coronavirus [J].Nature,2003,426 (6965):450-454.
    [27]Godet M. Grosclaude J, Delmas B, et al. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein [J]. J Virol.1994,68:8008-8016.
    [28]Ballesteros L, Sanchez C, and Enjuanes L. Two Amino Acid Changes at the N-terninus of TGEV Spike Protein Result in the Loss of EntericTropism [J]. Virology,1997,227 (2): 378-388.
    [29]Christine K, Graham D, Yolken R. et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV [J]. Journal of Virol.1997,71 (4):3285-3287.
    [30]Rest J S, Minjdell DP. SARS associated coronavirus has a recombinant polymerse and coronavirus has a history of host-shifting [J]. Infect Genel Evol,2003 (3):219-225.
    [31]Vennema H, Rossen JW, Wesseling J. et al. Rottier PJ. Genomic organization and expression of the 3" end of the canine and feline enteric coronaviruses [J]. Virology,1992,191 (1): 134-140.
    [32]Jurgen Schneider-Schaulies. Cellular receptor for viruses:links to tropism and pathogenesis [J]. Journal of General Virology.2000,81:1413-1429.
    [33]Kunkel F, Herrler G Structural and functional analysis of the surface protein of human coronavirus OC43 [J]. Virology,1993.195:195-202.
    [34]Prabkaran. P. Xiao. X, Dimitrov. D.S. A model of the ACE2 structure and function as a SARS-CoV receptor [J]. Biochem Biophys Res Commun.2004,314:235-241.
    [35]Ballesteros L, Sanchez C, Enjuanes L. Two amino acid changes at the N-terminus of TGEV spike protein result in the loss of enteric tropism [J]. Virology,1997,227 (2):378-388.
    [36]Christine K, Graham D, Yolken R. et al. Point mutations in the S protein connects the sialic acid binding activity with the enteropathogenicity of TGEV [J]. Virol,1997,71 (4): 3285-3287.
    [37]Schultze B, Gross N J. Brinhard R. et al. The S protein of Bovine Coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant [J]. J Virol, 1991.11 (65):6232-6237.
    [38]Emily C, Carolyne M. Infection bronchitis virus E protein is targeted to Golgi complex and directs release of viru S-like particles [J] Virol,2000,74:4319-4326.
    [39]Maeda J, Repass JF, Maeda A, et al. Membrane topology of coronavires E protein [J]. Virology,2001,281 (2):163-169.
    [40]Lim KP, Liu DX. The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus nvelope protein in the preGolgi compartments and physica interaction between the envelope and membrane proteins [J]. J Biol Chem,2001,276
    [41]Baudox P, Carrat C, Besnardeau L, et al. Coronavirus pseudoparticle formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes [J]. J Virol, 1998,72:8636-8643.
    [42]黄建峰.冠状病毒(Coronavirtls) [J]中国航天医药杂志.2004,1(6):74-75.
    [43]Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion [J]. J Virol,1995 Sep.-69 (9):5269-5277.
    [44]Armstrong J, Niemann H, Smeekens S, et al. Sequence and topology of a model intracellular membrane protein. El glycoprotein, from a coronavirus [J]. Nature,1984,308:751-752.
    [45]Raamsman MJ, Locker JK., de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E [J]. J Virol,2000 Mar,74 (5):2333-42.
    [46]Maeda J, Maeda A, Makino S. Release of coronaviruse E protein in membrane vesicles from virus infected and E protein expressing cell [J]. Virology,1999,263:265-272.
    [47]Escor D, Ortego J, Laud H, et al. The membrane M protein carboxy terminal bind to transmissible gastroenteritis coronvirus core and contribute to core stability [J]. J Virol,2001, 75:1312-1324.
    [48]Escors D, Camafeita E, Ortego J, et al. Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core [J]. J Virol,2001,75 (24):12228-12240.
    [49]Pulford DJ, Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and Mproteins by recombinant vaccinia viruses [J]. Virus Res,1991, 18 (2-3):203-17.
    [50]Liu C. Kokuho T, Kubota T, et al. DNA mediated immunization with encoding the nucleoprotein gene of porcine transmissible gastroenteritis virus [J]. Virus Res,2001,80 (1-2):75-82.
    [51]Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection [J]. Virology,2002,294:222-236.
    [52]赵荣乐.郑光宇.冠状病毒研究进展[J].生物学通报.2003,38(6):3-5.
    [53]Girard A, Greig AS. Encephalomyelitis of swine caused by a hamaggluntinating birus. Serological studies.Res Vet Sci 5:1964.294-302.
    [54]McFerran JB,Clarke JK. Serological evidence of the presence of hemagglutinating encephalomyelitis virus in Northern Ireland. [J] Vet Rec 1971.88:339.
    [55]Cartwright SE,Lucas M. Vomiting and wasting disease in piglets. Vet Rec 1970.86:278-280.
    [56]Hirano N.Ono K. A serological suivey of human coronavirus in pigs of the Tohoku District of Japan. [J] Adv Exp Med Biol 1998.440:491-494.
    [57]Appel M,Greig AS. Characterization and isolation of structural polypeptides in hemagglutinating encephalomyelitis virus. [J] Gen Virol 1965.48:193-204.
    [58]Chang GN,Chang TC. Isolition and identification of hemagglutinating encephalomyelitis virus form pigs in Taiwan. [J] ChinSoc Vet Sci 1993.19:147-158.
    [59]Sasseville AM. Biological and molecular characteristic of an HEVisolate associated with recent acute outbreaks of encephalomyelitis in Quebec pig farms. [J] Adv Exp Med Biol 2001.494:57-62.
    [60]Maria A. Quiroga, Javier Cappuccio. Hemagglutinating Encephalomyelitis Coronavirus Infection in Pigs,Argentina. Emerging Infectious Diseases [J] Vol.14, No.3, March 2008.
    [61]Flint,S.J.E.,L.W.,Krug R.M.,Racaniello V.R..Skalka,A.M.Principles of Virology:Molecular Biology,Pathogenesis,and Control.ASM Press,Washington,D.C2000.
    [62]Annette H.,Andreas F.K. Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. [J] Gen Virol.1998,79(6): 1387-1391.
    [63]Young,J.A.T. Virus entry and uncoating,p.87-103.In D.M.Knipe,Howley,P.M.(ed.),Fields Virology,4th ed.vol.1.Lippincott Williams and Wilkins,Philadelphia.2001.
    [64]巫学兰,崔天盆.病毒细胞受体作用机制研究进展[J].国外医学病毒学分册,2003,10(5):155-158.
    [65]Feng,Y.,C.C.Broder,P.E.Kennedy et al. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane,G protein-coupled receptor [J].Science,1996,272:872-877.
    [66]Wu,L.,N.P.Gerard,R.Wyatt,H. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 [J].Nature,1996,384:179-183.
    [67]Lee C.,Park C.K.Lyoo Y.S. et al. Genetic differentiation of the nucleocapsid protein of Korean isolates of porcine epidemic diarrhoea virus by RT-PCR based restriction fragment length polymorphism analysis.Vet J.2007 Aug 27[Epub ahead of print].
    [68]Delmas B.J.,Gelfi R.L.,Haridon L. et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV.Nature,1992.357:417-419.
    [69]Annette H..Andreas F.K. Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. [J] Gen Virol.1998.79(6): 1387-1391.
    [70]Claude L.,Nathalie A.,Neil R.C., et al. Involvement of aminopeptidase N(CD13)in Infection of Human Neural Cells by Human Coronavirus 229E. [J] Virol.1998,72(8):6511-6519.
    [71].Hofmann H.K..Pyrc L.,Van D.H., et al. Human coronavirus NL63 employs the severe acute-respiratory syndrome coronavirus receptor for cellular entry.Proc Natl Acad Sci USA.2005.102(22):7988-7993.
    [72]Hideyuki K.,Yasuko K.,Yamada., et al. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. [J] Virol.1994.68(9):5403-5410.
    [73]Beate S.,Hans J.G.,Reinhard B., et al. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-0-acetylated sialic acid as a receptor determinant. [J] Virol.1991,65(11):6232-6237.
    [74]Reinhard V.,Willem L.,Willy S., et al. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses.Proc Natl Acad Sci USA,1988,85(12):4526-4529.
    [75]Schultze B.H.J..Gross R., et al. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes:comparison with bovine coronavirus and influenza C virus.Virus Res.1990,16(2):185-194.
    [76]Hong P.J.,Dwight C.L.Lei S. et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. [J] Virol.2005,79(33):14614-14621.
    [77]Christine W.,Christel S.W.,Dave C. et al. Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus. [J] Gen Virol.2006,87(5):1209-1216.
    [78]Skehel,J.J.,and D.C.Wiley. Receptor binding and membrane fusion in virus entry:the influenza hemagglutinin [J]. Annu Rev Biochem,2000,69:531-569.
    [79]Lai.M.M.C. et al. Holmes.Coronaviridae:The Viruses and their Replication, Philadelphia. [J] 2001.1163-1185.
    [80]Perlman.S.,and A.A.Dandekar. Immunopathogenesis of coronavirus infections:implications for SARS [J].Nat Rev lmmunol.2005.5:917-927.
    [81]Weiss.S.R.,and S.Navas-Martin.Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Microbiol Mol Biol Rev,2005,69:635-64.
    [82]Dimitrov.D.S.Virus entry:molecular mechanisms and biomedical applications [J].Nat Rev Microbiol,2004,2:109-122.
    [83]Wang,J.Protein recognition by cell surface receptors:physiological receptors versus virus interactions [J].Trends Biochem Sci,2002,27:122-126.
    [84]Bonavia A.,Zelus B.D..Wentworth D.E. et al. Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E. [J] Virol.2003,77(4):2530-2538.
    [85]Babcock G.J..Esshaki D.J.,Thomas W.D. et al. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. [J] Virol.2004,78(9):4552-4560.
    [86]Godet M.,Grosclaude J.,Delmas B. et al. H.Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus)spike protein. [J] Virol.1994.68(12):8008-8016.
    [87]Kubota S.,Sasaki O.,Amimoto K., et al. Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus. [J] Vet Med Sci.1999.61(7):827-830.
    [88]Yagami, K., Hirai, K. and Hirano, N. Pathogenesis of haemagglutinating encephalomyelitis virus (HEV) in mice experimentally infected by different routes. Journal of Comparative Pathology,1986 96,645-657.
    [89]Hirano, N., Haga, T., Sada, Y. et al. Susceptibility of rats of different ages to inoculation with swine heamagglutinating encephalomyelitis virus (a coronavirus) by various routes. Journal of Comparative Pathology,2001a 125,8-14.
    [90]Hirano, N., Tohyama, K. and Taira, H. Spread of swine hemagglutinating encephalomyelitis virus from peripheral nerve to the CNS in rats. Advances in Experimental Medicine and Biology,1998 440,601-607.
    [91]Narita,M., Kawanura, H., Haritani,M. et al. Demonstration of viral antigen and immunoglobulin (IgG and IgM) in brain tissue of pigsexperimentally infected with haemagglutinating encephalomyelitis virus. Journal of Comparative Pathology,1989100, 119-128.
    [92]Andries, K. and Pensaert, M. Virus isolation and immunofluorescence in different organs of pigs infected with hemagglutinating encephalomyelitis virus. American Journal of Veterinary Research,1980a 41,215-218.
    [93]N. Hirano, R. Nomura, T. Tawara et al. Neurotropism of Swine Haemagglutinating Encephalomyelitis Virus (Coronavirus) in Mice Depending upon Host Age and Route of Infection. [J]. Comp. Path.2004, Vol.130,58-65
    [94]Rinaman, L., Card, J.-P. and Enquist, L. W. Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central neuronal infection with pseudorabies virus. Journal ofNeuroscience,1993 13,685-702.
    [95]Carbone, K. M., Trapp, B. D., Griffin, J.W., et al. Astracytes and Schwann cells are virus-host cells in the nervous system of rats with Borna disease. Journal of Neuropathology and Experimental Neurology.1989 48,631-644.
    [96]Sur. J. H., Kim, S. B.. Osorio, F. A. et al. O. K. Study of intraneuronal passage of pseudorabies virus in rat central nervous system by use of immunohistochemistry and in situ hybridisation. American Journal of Veterinary Research,1995 56,1195-1200.
    [97]Yu MW, Scott JK, Fournier A, et al. Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides [J]. Virology,2000,271(1):182-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700