用户名: 密码: 验证码:
蚊媒病原体综合检测方法的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊媒病是一组以蚊虫为媒介而传播的疾病,包括疟疾、淋巴丝虫病、黄热病、登革热、流行性乙型脑炎、西尼罗热等,是重要的公共健康问题。随着全球气候逐渐上升、城市化进程的加快、旅游和贸易的快速发展、生态环境的不断变化,全球蚊媒传染病发病呈上升趋势,原有疾病的流行区域不断扩展、疾病的流行频度不断增加。
     随着疾病谱发生变化,相应的检测和监测技术要及时跟进,以适应新的疾病监测需求。检测及监测蚊虫携带的病原体,在传染病监测中属于早期监测和发现传染病流行的方法,对于蚊媒传播疾病的有效预警和控制有重要的意义。
     以往的研究都是针对一种病原体检测,且有些检测方法灵敏度不够高,不能够早期发现蚊媒传染病的流行;此外,从生物学分类角度来看,蚊媒病病原体涉及微生物学与寄生虫学专业,目前蚊媒病监测也是针对单病种,不同病原体分类专业人员分别从自身专业领域进行检测,浪费人力、财力,且各专业独力实施,不利于高效、综合采取防治措施。因而,对于蚊媒病的防治应当综合考虑。
     本研究设计对野外采集的蚊虫综合检测多种携带的病原体,如黄病毒属病毒、疟原虫和丝虫。将野外采集蚊虫样本同批次处理后高通量检测,经济、高效检测蚊传病原体,其研究结果可为卫生防病部门提供简化的检测、监测步骤和程序,提高效率和减少重复工作量。
     以黄病毒属病毒保守性最高的非结构蛋白5(nonstructural protein,NS5)基因为靶基因,根据GenBank中已报道30多种蚊媒黄病毒属病毒日本脑炎病毒组(Japanese Encephalitis Virus Complex),包括日本(乙型)脑炎病毒(Japanese encephalitis virus, JEV)、登革病毒(Dengue virus, DenV)、黄热病毒(yellow fever virus, YFV)、西尼罗病毒(West Nile virus, WNV)等病毒NS5基因序列,用DNAStar软件设计出3条半巢式PCR通用引物,以JEV cDNA﹑DenV I~IV型cDNA为模板优化反应条件,建立反转录半巢式PCR(RT-hemi-nested PCR)方法;以日本脑炎病毒减毒活疫苗(SA14-14-2株)测定该方法的敏感度,结果显示,RT-hemi-nested PCR方法的最低病毒检出浓度为5.0×10~(-4)PFU/m1,灵敏度与同类方法相比高出一个数量级。
     根据GenBank中疟原虫(包括恶性疟原虫﹑间日疟原虫﹑三日疟原虫﹑卵形疟原虫﹑诺氏疟原虫等)SSUrRNA基因和丝虫(马来丝虫,犬恶丝虫等)线粒体基因保守区的序列,用DNAStar软件设计6条半巢式多重PCR通用引物。以恶性疟原虫﹑间日疟原虫﹑马来丝虫DNA为模板优化反应条件,建立半巢式多重PCR方法,然后以恶性疟原虫DNA﹑马来丝虫DNA测定该方法的敏感度。并用该方法检测实验室感染约氏疟原虫的大劣按蚊。所建立的半巢式多重PCR方法检测疟原虫下限为0.53个恶性疟原虫,丝虫检测下限为0.01条马来丝虫。该方法可以明确地检测出大劣按蚊中感染的约氏疟原虫子孢子。
     选择云南普洱周边地区作为蚊媒观察点采集蚊虫。按照采集时间将蚊虫每10只分为一个混合样本组,样本少时则每组少于10只。用上述建立的蚊媒黄病毒属RT- hemi-nested PCR检测了54组三带喙库蚊虫样本,其中14组为阳性,经测序确认9组为乙型脑炎病毒﹑3组为登革热II型病毒﹑1组为登革热I型病毒﹑1组未知病毒(与Quang Binh virus相似度最高,为82%)。上述病毒的最小感染率分别为16.7‰,5.55‰,1.85‰和1.85‰。用半巢式多重PCR检测了148组按蚊和三带喙库蚊样本检测疟原虫和丝虫,未发现阳性扩增。
     本研究针对蚊媒病防治中的关键需求,建立了一套黄病毒属病毒、疟原虫、丝虫简单、有效、高通量的检测方法,该方法可用于大批量的检测野外采集的蚊虫。经现场蚊虫检测,在云南普洱周边采集的蚊虫体内发现日本脑炎病毒﹑登革病毒I型和II型和未知病毒(属于黄病毒属)。说明在当地人群或动物体内,存在这些黄病毒属日本脑炎组病毒的低度流行。该研究结果应当引起疾病控制有关部门的重视,并对这些地区以及其他类似地区进行进一步的监测;同时本实验建立的检测方法还可用于病人蚊媒病的检测。高通量的蚊虫检测还能够提供可定性和定量的蚊媒携带病原体资料,也可为蚊媒病监测以及可能传入我国的新型蚊媒病病原体的检测以及预警提供了基础资料;随着地理信息系统在蚊媒病监测、预警中的应用,该方法无疑可为蚊媒病的监测提供更有效的资料,使蚊媒病的监测和预警更为准确、更具有科学性。
Mosquito-borne diseases are transmitted by mosquitoes, which include malaria, lymphatic filariasis, yellow fever, Dengue fever, Japanese encephalitis, West Nile fever. etc. The epidemics of mosquito-borne diseases could raise important public health problem. Owing to the global climate warming, accelerating of urbanization, rapid development of tourism and international trading, and the deterioration of enviromnent, the incidence of mosquito-borne disease rises and the affected regions expand.
     With the changing pattern of the vector-borne diseases, it is pressed that much sensitive, specific and high throughput detecting methods been developed to fit the need of Disease Surveillance . Detecting of pathogens-carring mosquito are an earlier detection and surveillance approach in forecasting the epidemics of vector-borne diseases, which is crucial for early warning and effective controlling of mosquito-borne diseases. Most studies in surveillance of mosquito-borne diseases are targeted to detect single specific pathogen, and some of methods are not satisfactory due to a lower sensitivity. It is imperative to develop multiple-pathogens detecting methods in surveillance the mosquito-borne diseases.
     This study is designed to develop high throughput, multiplex detection hemi-nested PCR methods for screening the field caught mosquitoes. The method includes divide the mosquitoes in pools, and processed the samples in two paralleled vials. One was retro-transcripted for detecting flavivirus. The other one was used for PCR amplifying to detect Plasmodium spp. and filarial worms.
     For detecting the flavivirus, the nonstructural proteins gene, NS5 gene was selected as the amplification target. The primers were designed in reference of more than 30 viruses in Japanese Encephalitis Virus Complex found in GenBank , including Japanese encephalitis virus(JEV), Dengue virus( DenV), Yellow fever virus,( YFV), West Nile viruss (WNV), etc. which are endemic in China, or is regarded as the potential imported pathogens.
     To optimize the reaction conditions, we used cDNA of JEV, DenV I~IV types as PCR templates. The RT-hemi-nested PCR method was established for the detection of Japanese encephalitis virus Complex. The sensitivity of the method was then further evaluated with attenuated vaccine strain of Japanese encephalitis virus (SA14-14-2 strains). The threshold concentration for detecting the virus was 5.0×10~(-4) PFU/ml, ten-fold sensitive then the similar methods.
     A multiplex hemi-nested PCR method was established to amplify the SSU rRNA gene of Plasmodium spp.,( including P. falciparum, P. vivax, P. malaria, P. knowlesi, etc.), and the mitochondria genes sequence of lymphatic filarial worms reported in GenBank (including Brugia malayi, Dirofilariasis immitis, etc.). We designed 6 universal primers for multiplex hemi-nested PCR. And the genomic DNA from P. falciparum, P. vivax, B. malayi were used for optimizing the reaction conditions. The method was evaluated by detecting P. yoelii sporozoites containing Anopheles dirus. The sensitivity of the method was also evaluated with the genomic DNA from P. falciparum and B. malayi. The minimum amout of DNA from P. falciparum that can be detected by the method was equivalent to be 0.53 parasite. And for B. malayi, the amount was equivalent to be 0.01 parasite. The method could clearly detect P. yoelii in An. dirus.
     The two methods we established were further evaluated in detection field-collected mosquites. The mosquitoes were trapped from several collecting spots surrounding the Puer cities of Yunnan province, All samples were species identified and allocated into pools, Each mosquito pool contained 10 or less mosquitoes depends on the numbers of each sampling. We used the RT-hemi-nested PCR method to detect 54 pools of Culex tritaeniorhynchus. 14 mosquito pools had positive amplification. Sequencing of the amplicons revealed 9 pools of JEV, 3 pools of DenV type II, 1 pool of DenV type I, and 1 pool of unknown virus (the closest match was Quang Binh virus with 82% similarity). The minimum infection rates for the above viruses are 16.7‰, 5.55‰, 1.85‰, 1.85‰, respectively. 148 pools of mosquitoes was detected for Plasmodium spp., and filarial worms, no positive amplification was found.
     The two hemi-nested PCR methods we established are well meeting the need in surveillance of mosquito-borne diseases. The methods show superior in detecting mosquito-borne pathogens simultaneously and high throughputly. Monitoring pathogens-infected mosquitoes is an earlier detection and surveillance approach in forecast the transmitting potential of mosquito-borne diseases. The methods are simple, effective, relative rapid for detection, and is superior over virus culture method in its high-throughput detection. On detecting the field caught mosquitoes, we found JEV, DenV type II and I, unknown virus in mosquitoes collected from Puer, Yunnan province. Health workers in each CDC level should pay more attention to the results, and proceed further surveillance in this region and other similar regions. Meanwhile, the data obtained with the utilizing the methods could also provide experimental documents for mosquitoes surveillance, for diagnosis and monitoring of emerging imported mosquitoes-borne diseases. With the incorporation of the GIS in surveillance and forecasting of mosquito-borne diseases, it is no doubts that the methods we established could provide more reasonable and more effective data.
引文
[1] Gratz NG. Emerging and resurging vector-borne diseases. Entomology, 1999, 44 : 51-75.
    [2] Hoetz PJ, Reme JHF, Buss P, et al. Combating tropical infectious diseases: report of the disease control priorities in developing countries project. Clin Infect Dis, 2004, 38(6) : 871-878.
    [3] Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems . Arch Med Res, 2002, 33(4): 330-342.
    [4] Is malaria eradication possible? . Lancet 2007, 370(9597) :1459.
    [5] Jones G, Steketee RW, Black RE, et al. How many child deaths can we prevent this year? . Lancet, 2003, 362(9377) : 65-71.
    [6] Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol, 2005, 35(11-12) : 1309-1318.
    [7]方美玉,林立辉,刘建伟.虫媒传染病.北京:军事医学科学出版社,2005: 8-90.
    [8]周晓俊,朱淮民,邱璐.检测蚊虫感染黄病毒属病毒Real-time PCR方法的建立.中国病原生物学杂志,2008, 3(8): 561-563.
    [9]刘燕,汤林华.检测和鉴定疟原虫虫种PCR方法的比较.国际医学寄生虫,2008, 35(1): 17-22.
    [10] De Paula SO, Fonseca BA. Dengue: A Review of the Laboratory Tests a Clinician Must Know to Achieve a Correct Diagnosis. Braz J Infect Dis, 2004, 8(6): 390-398.
    [11] Natale S, Jean-marc C, Alain J, et a1. Comparison of Flavivirus Universal Primer Pairs and Development of a Rapid, Highly Sensitive Heminested Reverse Transcription-PCR Assay for Detection of Flaviviruses Targeted to a Conserved Region of the NS5 Gene Sequences. J Clin Microbiol, 2001, 39(5):1922-1927.
    [12] Sánchez-Seco MP, Rosario D, Domingo C, et a1. Generic RT-nested-PCR for detection of flaviviruses using degenerated primers and internal control followed by sequencing for specific identification. J Virol Methods, 2005, 126(1/2): 101-109.
    [13] Gibbons RV, Vaughn DW. Dengue: an escalating problem. BMJ, 2002, 324 (7353): 1563–1566.
    [14] Ayers M, Adachi D, Johnson G, et al. A single tube RT-PCR assay for the detection of mosquito-borne flaviviruses. J Virol Methods, 2006, 135(2) : 235-239.
    [15] Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle?. Comp. Immunol Microbiol Infect Dis, 2004, 27(5) : 319–330.
    [16] Chareonsook O, Foy HM, Teeraratkul A, et al. Changing epidemiology of dengue hemorrhagic fever in Thailand. epidemiol infect,1999, 122: 161-166.
    [17] Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems . Arch Med Res, 2002, 33(4) : 330-342.
    [18] Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol, 2005, 35(11/12) : 1309–1318.
    [19] Vora N. Impact of Anthropogenic Environmental Alterations on Vector-Borne Diseases . Medscape J Med, 2008, 10(10) : 238.
    [20] Fang M, Chen C, Chen H, et al. Detection of flaviviruses by reverse transcriptase-polymerase chain reaction with the universal primer set. Microbiol. Immunol, 1997, 41(3): 209–213.
    [21] Kuno G. Universal diagnostic RT-PCR protocol for arboviruses. J Virol Method,1998,72 (1) : 27–41.
    [22] Lanciotti RS. Molecular amplification assays for the detection of flaviviruses. Adv Virus Res. 2003, 61: 67–99.
    [23] Dissanayake S, Min X, Piessens WF. Detection of amplified Wuchereria bancrofti DNA in mosquitoes with a nonradioactive probe. Mol Biochem Parasitol, 1991, 45(1): 49-56.
    [24] Iacono-Connors LC, Schmaljohn CS. Cloning and sequence analysis of the genes encoding the non-structural proteins of Langat Virus and comparative analysis with other flaviviruses. Virology, 1992, 188(2) : 875-880.
    [25]周水森,王漪,汤林华,等. 2005年全国疟疾形势分析.中国寄生虫学与寄生虫病杂志,2006, 24(6): 401-405.
    [26]朱淮民,李军,郑徽.诺氏疟原虫的人体自然感染.中国寄生虫学与寄生虫病杂志,2006, 24(1): 70-71.
    [27] Chris B, Dimitra N, Andrew MB, et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: a comparison of a new high-throughput assay with existing methods. Malaria Journal, 2008, 7: 177.
    [28] Arez AP, Lopes D, Pinto J, et al. Plasmodium sp.: Optimal protocols for PCR detection of lowparasite numbers from mosquito (Anopheles sp.) samples. Exp Parasitol, 2000, 94: 269-272.
    [29] Kho WG, Chung JY, Sim EJ, et a1. A multiplex polymerase chain reaction for a differential diagnosis of Plasmodium falciparum and Plasmodium vivax. Parasitol Int, 2003, 52: 229-236.
    [30]孙明林,陈培霞,薛采芳,等.套式PCR检测滤纸干血滴中恶性疟原虫的研究.中国寄生虫学与寄生虫病杂志,1996, 14(3): 197-200.
    [31] Snounou G, Viriyakosol S, Zhu XP, et a1. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993 , 61(2): 315-320.
    [32] Perandin F, Manca N, Calderaro A, et a1. Development of a Real-Time PCR Assay for Detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for Routine Clinical Diagnosis. J Clin Microbiol. 2004, 42(3): 1214-1219.
    [33]黄志彪,黄少玉,阮彩文,等. PCR方法检测血液和蚊体内马来丝虫的研究.广东寄生虫学年报,1999, 12(21): 5-6.
    [34]黄志彪,黄少玉,阮彩文,等. PCR方法检测血液和蚊体内班氏丝虫的研究.广东寄生虫学年报,2001, 27(3): 13-16.
    [35] Mishra K, Raj DK, Hazra RK, et al. The development and evaluation of a single step multiplex PCR method for simultaneous detection of Brugia malayi and Wuchereria bancrofti . Mol Cell Probes., 2007, 21(5-6): 355-362.
    [36]邓淑珍,张海林,李金梅.云南省蚊虫分布特点及自然感染乙型脑炎病毒的研究.中国媒介生物学及控制杂志,2009, 20(4): 344-248.
    [37] Lvov DK, Butenko AM, Gromashevsky VL, et al. Isolation of two strains of West Nile virus during an outbreak in southern Russia 1999. Emerg Infect Dis, 2000, 6(4): 373-376.
    [38] Nasci RS, White DJ, Stirling H, et al. West Nile Virus isolates from mosquitoes in New York and New Hersey,1999. Emerg Inf Dis, 2001, 7(4): 626-630.
    [39] White DJ, Kramer LD, Backenson PB, et al. Mosquito surveillance and polymerase chain reaction detection of West Nile virus, New York state. Emerg Inf Dis, 2001, 7(4): 643-649.
    [40] Pavri KM, Singh KRP. Isolations of West Nile virus from Culex fatigans mosquitoes from western India. Indian J Med Res, 1965, 53: 501-505.
    [41] McIntosh BM, Hupp PG, Dos Santos I, et al. Epidemics of West Nile and Sindbis viruses in South Africa with Cules(Culex) univittatus Theobald as vector. S Afr J Sci, 1976, 72(3): 295-299.
    [42] Sabage HM,Cianu C, Nicolescu G, et al. Entomologic and avian investigations of epidemic of West Nile fever in Romania in 1996, with serologic molecular characterization of a virus isolate from mosquitoes. Am J Trop Med Hyg, 1999, 61(4): 600-611.
    [43] Tsai TF, Popovici F, Cernescu C, et al. West Nile encephalitis epidemic in southeastern Romania. Lancet , 1998, 352(9130): 767-771.
    [44]张海林.云南省虫媒病毒研究进展.中国媒介生物学及控制杂志,2004, 15(5): 410-414.
    [45]张海林,自登云,龚正达.云南省乙型脑炎病毒宿主和媒介研究.中国预防兽医学报,2000, 22(2): 81-83.
    [46]张海林,米竹青,张云智,等.云南省边境地区蚊虫自然感染乙型脑炎病毒的研究.中国媒介生物学及控制杂志,2002, 13(2): 101-104.
    [47]孙肖红,付士红,张海林,等.云南省虫媒病毒的分离鉴定.中华试验与临床病毒学杂志,2005, 19(4): 319-324.
    [48]杨卫红,张海林,张云智,等.云南省澜沧县蚊虫及其与乙型脑炎关系的调查.医学动物防制,2000, 16(5): 231-232.
    [49]亚红祥,张海林. 2004年云南省大理和丽江地区乙脑血清流行病学分析.医学动物防制,2007, 23(10): 760-761.
    [50]米竹青,章域震,杨卫红,等.云南省5县健康人群乙型脑炎血清学调查.医学动物防制,2003, 19(11): 674.
    [51]张天寿,王逸民,张永和.云南省西南边境地区人血清虫媒病毒抗体调查.中华流行病学杂志,1989, 10(2): 74-77.
    [52]郭晓芳,吴超,王丕玉,等.云南西部边境地区健康人群登革热血清学调查.中国人兽共患病学报,2010, 26(5): 502-507.
    [53]李雪东,罗惠蓉,剂丽华,等.从捕自云南省河口县的白纹伊蚊分离得4型登革病毒.病毒学杂志,1987, 2(1): 76-77.
    [54]张海林,自登云,施华芳,等.从云南白纹伊蚊分得登革热Ⅳ型病毒.中华流行病学杂志,1984, 5(4): 281.
    [55]张海林,白登云,龚正达.云南省登革热流行病学调查分析.地方病通报,1999, 14(3): 50-54.
    [56]张海林,张云智,冯云,等.云南省2005年登革热监测分析.中国热带医学, 2006, 6(7): 1162-1163.
    [57]王丕玉,周红宁,张再兴,等.云南省2006年登革热监测分析.中国热带医学,2009, 9(8): 1561-1562.
    [58]杨起饶,刘行知,张嘉玉,等.云南省洱源县鸟吊山鸟血清虫媒病毒抗体调查.中华流行病学杂志,1988, 9(3): l50-182.
    [59]杨兰萍,张天寿,袁晓平,等.云南省沧源县猎狗血清虫媒病毒抗体调查[J].中国人兽共患病杂志,1992, 8(6): 36-37.
    [60] Crabtree MB, Nga PT, Miller BR. Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam . Arch Virol, 2009, 154: 857–860.
    [61] Johansen CA, Hall RA, van den Hurk AF, Ritchie SA, Mackenzie JS. Detection and stability of Japanese encephalitis virus RNA and virus viability in dead infected mosquitoes under different storage conditions. Am. J. Trop. Med. Hyg., 2002, 67(6): 656–661
    [62] De Paula SO, Lima DM, da Fonseca BAD. detection and identification of dengue-1 virus in clinical samples by a nested-PCR followed by restriction enzyme digestion of amplicons. J Med Virol. 2002, 66(4): 529-34.
    [63] Available at http://www.cdc.gov/ncidod/dvbid/westnile/mosquitoSpecies.htm#06
    [64]段志忠.昌宁县基本消灭疟疾后疟疾流行现状分析.中国病原生物学杂志,2009, 4(9): 714-715.
    [65]瞿生旺,段正明,王安艳,等.云南梁河县2001-2006年疟疾流行态势分析.中国热带医学,2009, 9(5): 892.
    [66]和春桐.云南省独龙江河谷地带疟疾再度暴发流行的调查.中国寄生虫病防治杂志,1996, 9 ( 3-A ): 51.
    [67]和春桐.云南贡山县独龙江河谷地带传疟媒介的调查研究.现代预防医学,2008, 35(23): 4670-4671.
    [1] Gratz NG. Emerging and resurging vector-borne diseases. Entomology, 1999, 44 : 51-75.
    [2] Hoetz PJ, Reme JHF, Buss P, et al. Combating tropical infectious diseases: report of the disease control priorities in developing countries project. Clin Infect Dis, 2004, 38(6) : 871-878.
    [3] Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems . Arch Med Res, 2002, 33(4): 330-342.
    [4] Is malaria eradication possible? . Lancet 2007, 370(9597) :1459.
    [5] Jones G, Steketee RW, Black RE, et al. How many child deaths can we prevent this year? . Lancet, 2003, 362(9377) : 65-71.
    [6] Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol, 2005, 35(11-12) : 1309-1318.
    [7] Milner DA, Montgomery J, Seydel KB, et al. Severe malaria in children and pregnancy: an update and perspective. Trends Parasitol, 2008, 24 (12) : 590-595.
    [8] Vora N. Impact of Anthropogenic Environmental Alterations on Vector-Borne Diseases . Medscape J Med, 2008, 10(10): 238.
    [9] Sutherst RW. Global change and human vulnerability to vector-borne disease. Clinical Microbiology Review, 2004, 17(1): 136-173.
    [10] Patz JA, Graczyk TK, Geller N, et al. Effects of environmental change on emerging parasitic diseases. Int J Parasitol, 2000, 30(12/13): 1395-1405.
    [11] Gould EA, Higgs S. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg, 2009, 103(2): 109-121.
    [12] Cosner C, Beier JC, Cantrell RS, et al. The effects of human movement on the persistence of vector-borne diseases . Theoretical Biology, 2009, 258(4): 550-560.
    [13] Benitez MA. Climate change could affect mosquito-borne diseases in Asia. Lancet, 2009, 373(9669): 1070.
    [14] Epstein PR. Chikungunya fever resurgence and global warming. Amer J Trop Med Hyg, 2007, 76(3): 403-404.
    [15] Hales S, Wet de, Macdonald N, et al. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet, 2003, 360(9336): 830-834.
    [16] Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev, 2004, 17(1): 136-173.
    [17]吴观陵.人体寄生虫学. 3版.北京:人民卫生出版社,2005: 800-801.
    [18]宋维华. 50年来我国蚊媒研究进展.医药产业资讯,2005, 2(24): 57-58.
    [19]瞿逢伊.我国传疟蚊媒研究:过去与现在.国际医学寄生虫病杂志,2009, 36(5): 315-322.
    [20] Qu FY, Xu SB, Xu JN, et al. On the biosystematics of Anopheles dirus complex (Diptera: Culicidae) in China.Entomologia Sinica, 1998, 5: 246-256.
    [21]牛玲玲,袁征,蔡国英. DNA探针用于中华按蚊和嗜人按蚊的分类研究.中国寄生虫学与寄生虫病杂志,1992, 10: 267-270.
    [22]缪建吾,潘家复,蒋文斌.中国赫坎按蚊类群六种按蚊的杂交和染色体的观察.动物学研究,1988, 9: 231-238.
    [23] Walton C, Samboon P, O’Loughlin SM, et a1.Genetic diversity and molecular identification of mosquito species in the Anopheles maculatus group using the ITS2 region of rDNA. Infect Genet Evol, 2007, 7(1): 93-102.
    [24]陆宝麟,许锦江,俞渊,等.中国动物志,昆虫纲,第9卷,双翅目,蚊科(下卷) .北京:科学出版社,1997: 1-184
    [25] Wilkerson RC, Li C, Rueda LM, et al. Molecular confirmation of Anopheles (Anopheles) lesteri from the Republic of South Korea and its genetic identity with An.(Ano.)anthropophagus from China(Diptera: Culicidae). Zootaxa, 2003, 378: 1-14.
    [26] Rueda LM, Wilkerson RC, Li C. Anopheles (Anopheles)lesteri Baisas and Hu.Diptera(Culicidae) neotype designation and description. Proc Entomol Soc Wash,2005,107(3): 604-622.
    [27]瞿逢伊.我国嗜人按蚊和雷氏按蚊分类地位的探讨.中国寄生虫学与寄生虫病杂志,2005,23(4):243-245.
    [28]徐晓春,徐建农,瞿逢伊.用聚合酶链反应区分我国大劣按蚊复合体A和D种.中国寄生虫学与寄生虫病杂志,1998, 16: 172-175.
    [29] Xu XC, Xu JN, Qu FY. A diagonosric polymerse chain reation assay for species A and D of the Anopheles dirus based on ribosomal DNA second internal transcribed spacer sequence. J Am Mosq Control Assoc, 1998,14:385-389.
    [30]瞿逢伊.我国大劣按蚊的分类地位与传疟作用研究现况.中国寄生虫学与寄生虫病杂志,1998, 16: 230-233.
    [31]俞渊,李明馨.海南岛微小按蚊类型的研究.中国寄生虫学与寄生虫病杂志,1984, 2: 95-98.
    [32]王学忠,Townson H,王丕玉,等.微小按蚊rDNA内转录间隔2区序列差异.中国媒介生物学及控制杂志,2001, 12(1): 24-27
    [33] Harbach R, Garros C, Manh ND, et al. Formal taxonomy of species C of the Anopheles minimus sibling species complex (Diptera: Culicidae). Zootaxa, 2007, 1654: 41-54.
    [34]赵彤言,陆宝麟.中国尖音库蚊复合体生物分类学的研究.中国科学技术协会,首届青年学术年会论文集,理科分册,1992: 432-437.
    [35]陆宝麟.我国蚊媒研究最近进展.中国媒介生物学及控制杂志,2001, 12(2): 81-84.
    [36]宋社吾,赵彤言,蒋书楠,等.我国尖音库蚊复合组蚊虫核糖体DNA第2内转录间隔区序列测定与分析.寄生虫与医学昆虫学报,2003, 10(2): 74-82.
    [37]瞿逢伊,朱淮民.我国按蚊新校订名表及若干蚊种学名的订正.中国寄生虫学与寄生虫病杂志,2008, 26(3): 210-216.
    [38]瞿逢伊,朱淮民.我国伊蚊族蚊类记录的校订及新分类系统的建议(双翅目:蚊科).中国寄生虫学与寄生虫病杂志,2009, 27(5): 36-447.
    [39] Gua WD, UnnaschaTR, Katholib CR, et al. Fundamental issues in mosquito surveillance for arboviral transmission. Trans R Soc Trop Med Hyg, 2008, 102(8): 817-822.
    [40] Teng HJ, Huang GC, Chen YC, et al. Mosquito surveys carried out on Green Island, Orchid Island, and Penghu Island, Taiwan, in 2003. Kaohsiung J Med Sci, 2005, 21(2): 51-56.
    [41] Almeida AP, Gal?oa RP, Sousaa CA, et al. Potential mosquito vectors of arboviruses in Portugal: species, distribution, abundance and West Nile infection. Trans R Soc Trop Med Hyg, 2008, 102(8) : 823-832.
    [42] White DJ, Kramer LD, Backenson PB, et al. Mosquito surveillance and polymerase chain reaction detection of West Nile virus, New York State. Emerg Infect Dis, 2001, 7(4): 643-649.
    [43] Moreira LA, Ghosh AK, Abraham EG, et al. Genetic transformation of mosquitoes: a quest for malaria control. Int J Parasitol, 2002, 32(13): 1599-1605.
    [44] Ritchie SA, Montague CL. Simulated populations of the black salt march mosquito (Aedes taeniorhynchus) in a Florida mangrove forest. Ecological Modelling, 1995, 77( 2/3): 123-141.
    [45] Arinaminpathy N, McLean AR, Godfray HCJ. Future UK land use policy and the risk of infectious disease in humans, livestock and wild animals. Land Use Policy, 2009, 26(Suppl 1): S124-133.
    [46] Tewari SC, Thenmozhi V, Rajendran R, et al. Detection of Japanese encephalitis virus antigen in desiccated mosquitoes: an improved surveillance system. Trans R Soc Trop Med Hyg, 1999, 93(5): 525-526.
    [47] Russell RC. Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health. Int J Parasitol, 1998, 28(6): 955-969.
    [48]周晓农,吴晓华,贾铁武,等.虫媒传染病的监测和应急管理,中国寄生虫学与寄生虫病杂志,2004, 22(3):176-178.
    [49] Thanchomnang T, Intapan PM, Lulitanond V, et al. Rapid detection of Dirofilaria immitis in mosquito vectors and dogs using a real-time fluorescence resonance energy transfer PCR and melting curve analysis . Vet Parasitol, 2010, 168(3/4) : 255-260.
    [50] Yang CF, Chen CF, Su CL, et al. Screening of mosquitoes using SYBR Green I-based real-time RT-PCR with group-specific primers for detection of Flaviviruses and Alphaviruses in Taiwan. J Virol Methods, 2010, 168(1/2): 147-151.
    [51] Jansen van Vuren P, Paweska JT. Laboratory safe detection of nucleocapsid protein of Rift Valley fever virus in human and animal specimens by a sandwich ELISA . J Virol Methods, 2009, 157(1): 15-24.
    [52] Paweska JT, Van Vuren PJ, Kemp A, et al. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo. Vet Microbiol, 2008, 127 (1/2) : 21-28.
    [53] Hay SI, Snow RW, Rogers DJ. From Predicting Mosquito Habitat to Malaria Seasons Using Remotely Sensed Data: Practice, Problems and Perspectives. Parasitology Today, 1998, 14(8): 306-313.
    [54]刘美德,王学忠,赵彤言,等.蚊虫群落与环境因素关系的地理信息系统分析.中国公共卫生,2008, 24(1): 32-34.
    [55]宋秀玲.成蚊传播登革病毒媒介效能的研究进展,热带医学杂志2005年5 (2): 251-254.
    [56] Garrett-Jones C. The human blood index of malaria vectors in relation to epiderniological assessment. Bull WHO, 1964, 30: 241-261.
    [57] Garrett-Jones C. The human blood index of malaria vectors in relation to epiderniological assessment. Bull WHO, 1964, 31: 71-86.
    [58] Garrett-Jones C. Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity . Nature,1964, 204: 1173-1175.
    [59]王敏,汤林华. Macdonald模型简介及其在疟疾流行区的应用.国际医学寄生虫病杂志, 2006, 33(3): 163-166.
    [60] Garrett-Jones C.Problems of epidemiological entomology as applied to malariology.Entomol Soc Am,1970, 7: 168-180.
    [61]蒋诗国,吴成果,晏维,等.重庆市嗜入按蚊分布区抗疟试点近远期防治效果评价.实用寄生虫病杂志,2002, 10(4): 175-177.
    [62] May RM. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 1977, 269: 475-477.
    [63]王志光,渠泽堂,陈圣瑞,等.海南省松涛水库水系区微小按蚊分布调查.热带医学,1994, 6(4): 203-206.
    [64]高琪,尚乐园,顾政诚.我国中部地区目前的疟疾形势.中国寄生虫病防治杂志,2004, 15(4): 193-194.
    [65]吴观陵.人体寄生虫学. 3版.北京:人民卫生出版社,2005:821-827.
    [66] Detinova TS. Fertility of the common malarial mosquito Anopheles maculipennis. Med Parasit, 1955, 24: 6-1l.
    [67] Detinova TS. The age composition and epidemiological significance of populations of A. maculipennis under conditions found in the province of Moscow. Med. Parasit, 1953, 22: 486.
    [68]杨天赐,傅桂明,任樟尧. GIS技术在蚊媒传染病监测中的应用与发展前景.中国卫生检验杂志,2007, l7(4): 761-762.
    [69]杨国静,周晓农. GIS与RS在寄生虫病防治研究中的应用.中国寄生虫病防浩杂志,2001, 14(1): 64-66.
    [70] Yang GJ, Gao Q, Zhou SS, et al. Mapping and predicting malaria transmission in the People’s Republic of China, using integrated biology-driven and statistical models. Geospatial Health, 2010, 5 (1): 11-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700