用户名: 密码: 验证码:
压电智能结构建模与实验技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捷联惯导系统直接与载体固连,在其工作状态下,系统受到外界激励的影响产生振动并将这种信号直接传递给惯性仪表和捷联系统从而引起动态误差,严重影响了惯导系统导航制导的精度。为了充分发挥捷联惯导系统的优势,将智能结构引入惯导系统振动主动控制中,开展基于智能结构的惯导系统振动主动控制技术研究,而智能结构振动主动控制的首要工作是建立能够真实反映结构特性的动力学模型,在结构精确建模的基础上,即可根据外界环境的变化自适应地调节系统的动态性能,从而实现捷联惯导系统振动主动控制。因此,建立智能结构的动力学模型,是实现捷联惯导系统振动主动控制的重要环节,对于抑制外界激励,提高惯导系统的抗干扰能力等后续工作具有十分重要的意义。
     本文在分析捷联惯导系统应用环境的基础上,首先设计了适用于惯导系统主动减振的压电智能基座结构及其硬件测试系统。然后根据有限元理论完成了智能基座结构单元的形函数、单元刚度矩阵和质量矩阵的推导,结合Hamilton原理,建立了压电智能基座结构单元及系统整体的有限元动力方程,并对该有限元高阶模型进行了降阶处理。在理论建模的基础上,完成了结构的计算模态分析,获得系统的各阶模态频率、相关振型及时域和频域动力响应特性,并利用ANSYS软件对压电智能基座结构进行模态分析和谐响应分析。最后,搭建了压电智能基座结构实验测试平台,完成了各项实验研究,结果表明,压电智能基座结构的各项特性满足设计要求,同时验证了本文有限元理论模型的合理性和有效性。
SINS connected directly with the carrier fixed, in its working condition, systems affected by external vibration excitation and the signal is passed directly to the inertial instruments and strap system which led to dynamic error. The accuracy of Inertial Navigation System guidance is affected seriously. In order to give full play to the advantage of sins, Smart structures are introduced in the active vibration control of INS. Smart structures to carry out INS based active vibration control technology, the smart structure active vibration control priority is to establish structural properties that reflect the dynamic model. Accurate modeling of the structure, based on changes in the external environment can be based on adaptive control system dynamic performance, in order to achieve the sins of active vibration control. Therefore, the establishment of dynamic model of smart structures is to achieve the sins of an important part of active vibration control, Incentives for the inhibition of the outside world, improve anti-interference ability of INS follow-up of great significance.
     Based on the analysis of SINS by the application environment, the first inertial navigation system designed for active vibration control of piezoelectric smart structure and the hardware test system base. Finite element theory and then completed a smart base structural unit of the shape functions, element stiffness matrix and mass matrix of the derivation, with Hamilton principle, the establishment of a piezoelectric smart structure unit and the base of the whole system of finite element dynamic equation, then the finite element model of the reduction order processing. Based on the theoretical model, completion of the structure of the computational modal analysis, access to the system frequency of each mode, the relevant modes in time domain and frequency domain dynamic response characteristics, Using ANSYS software to analyze the structure of piezoelectric smart base mode and response, Finally, the base structure of piezoelectric smart built experimental test platform, completion of various experimental study, The results show that the piezoelectric properties of the base structure to meet the design requirements, at the same time verify the finite element model is reasonable and effective.
引文
[1]胡庆雷,马广富.挠性航天器姿态机动控制的主动振动抑制.振动工程学报.2005,18(3):376-380.
    [2]刘恒春.捷联惯性导航减振系统研究.中国惯性技术学报.1995,3(4):29-33.
    [3]林娜.压电智能结构用于振动主动控制技术的研究.西安:西北工业大学,2006.135-148.
    [4]郑宾,孟立凡,侯文.智能结构用于捷联惯导基体振动控制.华北工学院学报.2001,22(1).
    [4]Hadjigeorgiou E P,Stavroulakis G E and Massalas C V,Shape control and damage identifieation of beams using Piezoeleetrie actuation and genetic optimization, International Journal of Engineering Seience,2006,44(7):409-421.
    [5]CheeC, Tong L and Steven G P, Piezoelectric actuator orientation optimization for static shape control of composite plates, Composite Struetures,2002,55(2):169-184.
    [6]张令弥.智能结构研究的进展与应用.振动、测试与诊断.1998,18(2):79-84.
    [7]李山青,刘正兴,杨耀文等.压电材料在智能结构形状和振动控制中的应用.力学进展.1999,29(1):66-76.
    [8]J.H. Mechanical and Structural Vibrations;Theory and Applications,2005.1:401-416.
    [9]董聪,夏人伟.智能结构研究进展与展望.大自然探索.1996,15(56):6-11.
    [10]姚军.压电结构的主动振动控制.南京:南京航空航天大学,1999.
    [11]Crawley E. F., and Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal,1987,25(1):1373-1385.
    [12]I m S., Atluri S.N. Effect of piezo-actuators on a finitely deformationed beam subjected to general loading.AIAA Journal,1989,27:1801-1807.
    [13]杨大智.智能材料与智能系统.天津大学出版社,2000.
    [14]Dimitriadis E. K., Rogers C.A. Piezoelectric actuators for distributed noise and vibration excitation of thin plates. Proceeding of ASME Failure Prevent and Reliability Conference, 1989, Montreal:223-233.
    [15]陈塑寰,马爱军,刘中生.智能结构的梁有限元模型.宇航学报.1997,18(2):36-51.
    [16]欧进萍.结构振动控制.北京:科学出版社,2003.
    [17]Wang B. T., Rogers C.A. Laminated Plate Theory for Spatially Distributed Induced Strain Actuators. Journal of Composite Material, April 1991,25(3):433-452.
    [18]Liang C., Sun F.P., Rogers C.A. Dynamic Output Characteristics of Piezoelectric Actuators. Proceedings, SPIE Smart Structures and Materials'93, Albuquerque,NM31 Jan. To 4 Feb,1993.
    [19]林西强,任钧国.含压电片梁的振动控制.国防科技大学学报.1999、21:25-28.
    [20]秦荣,秦俊.智能结构分析的新方法.工程力学.2003、20.
    [21]孙爱琴,王建国.层合板壳振动主动控制的研究现状与发展.合肥学院学报.2008、18.
    [22]Tzou, H.S.A new Distributed Sensation and Control Theory for Intelligent Shells.Journal of Sound and Vibration,1992,152(1):176-184.
    [23]Tzou H.S., Tseng C.I. Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter System:A Piezoelectric Finite Element Approach. Journal of Sound and Vibration,1990,138(1):17-34.
    [24]Ha S.K., Keilers C., Chang F.K. Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA Journal, Mar 1992,30(3):772-780.
    [25]李双蓓,文晓海,何玉斌.压电智能复合材料层合板壳结构分析的现状与发展.广西大学报,2008,30.
    [26]Hwang W.S., Park H.C. Vibration Control of a Laminated Plate With Piezoelectric Sensor/Actuator:Finite element formulation and modal analysis. Journal of Intelligent Material Systems and Structures,1993,4(4),317-329.
    [27]Chandrashekhara K., Agarwal A.N. Active vibration control of laminated beam. Journal of Intelligent Material Systems and Structures,1993,4(10):496-508.
    [28]Ray M.C., Bhattacharyya R., and Samanta B. Static Analysis of an Intelligent Structures by the Finite Element Method.Computers and Structures,1994,52(4):617-631.
    [29]王忠东,陈塑寰.智能结构有限元动力模型的建立及主动振动控制和抑制.计算力学学报,1998,15(1):38-43.
    [30]王锋.压电结构建模、优化与振动控制.国防科学技术大学,2006.4:16-21.
    [31]王树国,丁希仑,蔡鹤皋.机器人柔性臂动力学有限元建模方法的研究.哈尔滨工业大学学报,1997,29(1):114-116.
    [32]刘正兴,杨耀文,蔡炜,等.机电耦合有限单元及动力方程.上海交通大学学报,1997,31(7):54-59.
    [33]蒋建平,李东旭.压电复合梁高阶有限元模型与主动振动控制研究.动力学与控制学报,2007(2):141-146.
    [34]战启芳,杨石柱,邓年春.压电板的主动控制实验研究.石家庄铁道学院学报.2006:113-115.
    [35]孙东昌,王大钧.梁振动控制的分布压电单元法.北京大学学报,1996,32(5):585-593.
    [36]曹国雄.弹性矩形板振动.北京:中国建筑工业出版社,1983.
    [37]郑世杰.压电层合板壳的数值分析与控制仿真.宇航学报,2003:24(6)
    [38]姚军,李岳锋,刘娟.压电薄板的建模和阻尼的准独立模态控制.航空学报,2000:21(2)
    [39]袁华.智能压电柔性板多输入多输出振动主动控制研究.南京:南京航空航天大学,2005,30-36.
    [40]吕永桂等.悬臂板振动控制传感器/执行器优化配置.兵工学报,2006,27(1)
    [41]林西强,任均国.含压电片层合板的振动控制.宇航学报,2000,21:90-95.
    [42]刘俊卿,陈永富.压电薄板动力有限元及振动控制.西安建筑科技大学学报,2004:349-352.
    [43]曹树谦.振动结构模态分析—理论,实验与应用.天津:天津大学出版社,2001.
    [44]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000:43-47.
    [45]赵国忠.压电材料结构优化控制方法及结构屈曲优化设计.大连理工大学,2001.6,p75-81.
    [46]刘春美.压电智能梁结构振动控制技术仿真与实验研究.中北大学,2003.3:18-33.
    [47]王小兵.压电智能板结构的H_振动控制.西安电子科技大学,2004.1:29-33.
    [48]何丽丽.压电智能结构振动主动控制研究.河北工程大学,2009.4:82-90.
    [49]郭立涛.模态参数识别与压电智能梁振动控制.西安电子科技大学,2010.1:35-43.
    [50]谢能刚,孙林松,包家汉等.弹性结构的自控制与优化.合肥工业大学出版社,2007.5:123-129.
    [51]张京军,何丽丽,高瑞贞.基于模型降阶的压电柔性结构动力响应分析.工程力学,2009,26(7)
    [52]詹训慧.分布式压电智能结构的建模与振动控制.中国科学技术大学,2007.11:83-95.
    [53]赵晶宝.汽车局部振动控制理论与算法研究.吉林大学,2008.4:24-31.
    [54]徐斌,高跃飞,余龙等MATLAB有限元结构动力学分析与工程应用.北京:清华大学出版社,2009.12:16-25.
    [55]周长城,胡仁喜,熊文波ANSYS11.0基础与典型范例.北京:电子工业出版社,2007.10:285-305.
    [56]邱志成.基于自适应滤波的压电智能挠性悬臂板振动控制研究.系统仿真学报.2006,18.5:1311-1318.
    [57]孙煜博.压电智能结构振动主动控制方法研究.中北大学,2008.4:46-51.
    [58]张令弥.振动测试与动态分析.北京:航空工业出版社,1992.11:205-262.
    [59]胡于进,王璋奇.有限元分析及应用.北京:清华大学出版社,2009.4:143-151.
    [60]张亚辉,林家浩.结构动力学基础,大连:大连理工大学出版社,2007.5:229-257.
    [61]吴成军.工程振动与控制.西安:西安交通大学出版社,2008.3:47-56.
    [62]谢官模.振动力学.北京:国防工业出版社,2007.3:75-80.
    [63]周昌玉,贺小华.有限元分析的基本方法及工程应用.北京:化学工业出版社,2006.6:60-76.
    [64]陈国荣.有限单元法原理及应用.北京:科学出版社,2009:330-356.
    [65]邓年春,邹振祝.压电板的主动控制.压电与声光,2004:517-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700