用户名: 密码: 验证码:
桩基及锚固工程的分析计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
承压桩、抗拔桩、锚杆都是埋于半无限体中的杆件,具有模型上的类似性。这种类似性使之在力学性能、分析方法上都具有共性。长期以来,这三者都在各自领域内独立发展,而将这三者进行比较研究的工作尚少有人涉及。本文在分析三者各自特点的基础上,指出广泛应用于桩基工程的荷载传递法可以方便的应用到锚杆、抗拔桩的变形分析中。通过荷载传递方法,对锚杆的变形特征、极限承载力特征、临界锚固长度进行了分析。算例证明了荷载传递法对锚杆的适用性。通过荷载传递法,还对扩底抗拔桩、以及考虑抗拔力作用点位置的抗拔桩的变形性能进行了分析。算例也证明了荷载传递法对抗拔桩的适用性。此外,还依据桩荷载位移曲线数学模型的启发,提出了锚杆位移荷载曲线的数学模型。本文还将锚杆理论应用到柔性桩的分析中,给出了柔性桩临界桩长计算的新方法。
     由于工程中大量使用的都是群桩,而群桩的分析一直都是工程中的难点。虽然目前考虑上部作用—基础—群桩的分析理论已日趋成熟,但这些方法都涉及大量复杂的编程工作而在实际工程中应用较少。因此,提出实用的共同作用分析方法具有重要现实意义。针对工程中这一需要,本文以相互作用函数为基础,编制了地基的刚度矩阵;上部结构、基础采用刚度矩阵由通用有限元程序计算,从而提出了编程工作量极小的共同作用实用分析理论,并由此编制了实用分析程序PRAPP(Piled
     Raft Anaylis Practical Programme)。大量分析表明,通过处理,此程序对天然筏板基础、不带垫层复合地基基础、刚性桩复合地基基础、高承台群桩筏板基础、低承台筏板基础都具有良好的适用性。本文还采用该程序对工程中较为关心的群桩中单桩刚度特征进行了分析;对大规模刚性桩复合地基中垫层影响进行了分析。
     总的来说,本文以桩基工程为核心,从单桩理论出发,通过与抗拔桩、锚杆进行比较研究,对锚杆、抗拔桩的分析方法进行了发展;从已有群桩分析理论出发,提出了便于工程实用的共同作用实用分析技术以及程序。
As compression piles , tension piles and bolts share similar topological characteristics in their mechanical model, they may have similar mechanical behaviours and analysis methods. However, theories on them have developed independently and seldom has research been done to make comparison among them.In this paper, comparison study has been conducted and it is found that load-transfer method widely used for compression pile analysis is suitable to tension piles and bolts. It is also found that some theory for bolts is applicable to compression piles.As more and more highrise buildings are built in China, pile groups are usually used to support the superstructure. The analysis of such foundation is very complicated as it involves the interaction of pile group, foundation and superstructure. A lot of scholars have dedicated to methods for interaction analysis and many theoretical methods have been developed. However, such theoretical methods are seldom adopted in design work, as they often need heavy programming work. Thus, for design purpose more practical method is necessitated.In this paper, a practical interaction method, which is based on interaction function characterized with few programming work, is presented. Corresponding to aforesaid method, the practical program named PRAPP (Piled Raft Anaylis Practical Program) is developed.Based on PRAPP, the apparent single pile stiffness exhibited in pile group, which is crutial in simplified interaction analysis, is studied. The effect of cushion on rigid composite foundation is also studied.
引文
[1] Banerjee P K, Driscoll R M. Three-dimensional analysis of raked pile groups. Proceeding of the Institution of Civil Engineers, 1976. 2: 653-671.
    [2] Basile F. Nonlinear analysis of pile groups Proceedings of Civil Engineers. Geotechnical Engineering, 1999, 137(2): 105-115.
    [3] Butterfield R, Banerjee P K. The elastic analysis of compressible piles and pile groups. Geotechnique, 1971a, 21(1): 43-66.
    [4] Butterfield R, Banerjee PK. The problem of pile group-pile cap interaction. Geotechnique, 1971b, 21(2): 135-142.
    [5] Castelli F, Maugeri M, "Simplified nonlinear analysis for settlement prediction of pile groups", J. of Geotechnical and Geoenvironmental Engineering, 128(1):76~84,2002
    [6] Clancy P , Randolph M F . An approximate analysis procedure for piled raft foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17:849-869.
    [7] Cooke R W, Price G. Strains and displacements around friction piles in Proceedings of the Eighth international conference on soil mechanics and foundation engineering, Moscow, USSR: 497-500
    [8] Cooke R W. The settlement of friction pile foundations. Proc. Conference on Tall Buildings, Kuala Lumpur, 1974
    [9] Coyle H M, Reese L C. Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(2): 1-26.
    [10] D'Appolonia E, Romualdi J P. Load transfer in end-bearing steel h-piles. Journal of the Soil Mechanics and Foundation Division, ASCE, 1963, 89(2): 1-25.
    [11] Davis E H, Poulos H G The use of elastic theory for settlement prediction under three-dimensional conditions. Geotechnique, 1968,18(1): 67-91.
    [12] Desai C S. Numerical design-analysis for piles in sands. Journal of the Geotechnical Engineering Division, 1974, 100(6): 613-635.
    [13] Ellison RD, D'Appolonia E, ThiersGR. Load-deformation mechanism of for bored piles, Journal of the Soil Mechanics and Foundation Division, ASCE, 1971, 97(4): 661-677
    [14] Etnesto Motta. Approximate elastic-plastic solution for axially loaded piles. Journal of the Geotechnical Engineering, ASCE, 1994, 120(9): 1616-1624.
    [15] Evangelista A, SapioG. Behavior of ground anchors in stiff clays [A]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo: The Japanese society of soil Mechanics and Foundation Engineering, 1977: 39~47.
    
    [16] Franke E, Lutz B and El-Mossallamy Y. Measurements and numerical modeling of high-rise building foundations on Frankfurt clay. Vert. And horizontal deformations of foundations and embankments. ASCE Geot. Spec. Pub. No. 40,2,1325-1336,1994
    [17] Fraser R A, Wardle L J. "Numerical analysis of rectangular rafts on layered foundations", Geotechnique, 26(4):613~630,1976
    [18] Gardner W S. Consideration in the design of drilled piers. Design Construction and Performance of Deep Foundation, 1975
    [19] Geddes J D. Boussinesq-based approximations to the vertical stresses caused by pile-type subsurface loadings. Geotechnique, 1969b, 19(4): 509-514.
    [20] Geddes J D. Stress in foundation soils due to vertical subsurface loading. Geotechnique, 1969a, 16(3): 231-255.
    [21] Hain S J, Lee I K, "The analysis of flexible raft-pile systems", Geotechnique 28(1), 65-83,1978
    [22] Hewitt P B and Gue S S. Piled raft foundation in a weathered sedimentary formation, Kuala Lumpur, Malaysia, Proc. Geotropika, Malacca, Malaysia, 1-11,1994
    [23] Hooper J A. Observation on the behaviour of a piled-raft foundation on London clay. Proceeding of the Institution of Civil Engineers, 1973, 2:855-877
    [24] Kraft L M, Ray R P, Kagawa T. Theoretical τ~z curves Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(3): 1465-1488
    [25] Novak M, El-Sharnoby B. Pile groups under static and dynamic loading. Proc.11th ISCMFE, San Francisco, 1985, 3:1449-1454
    [26] Ostermayer H, Scheele F. Research on ground anchors in noncohesive soils[A]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo: The Japanese society of soil Mechanics and Foundation Engineering, 1977: 92~97.
    [27] Ottaviani M . Three-dimensional finite element analysis of vertically loaded pile groups. Geotechnique, 1975, 25(2): 159-174
    [28] Poulos H G, Davis E H, Pile foundation analysis and design. John Wiley & Sons, Inc., New York, 1980
    [29] Poulos H G, Davis E H. The settlement behaviour of single axially loaded incompressible piles and piers. Geotechnique, 1968a, 18(1): 351-371
    [30] Poulos H G, Mattes N S. The behaviour of axially loaded end-bearing pile. Geotechnique, 1969, 19(2): 385-300
    [31] Poulos HG. Pile behaviour-theory and application. Geotechnique, 1989, 39(3): 365-415.
    [32] Poulos H G. Settlement of single piles in nonhomogenuous soil. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(5): 627-641.
    
    [33] Poulos H G. Analysis of piled strip foundations, Comp. Methods and Advances in Geomechs., Ed.G.Beer, G.R.Booker and J.P.Carter, A.A.Balkerma, Rotterdam,1,191~193,1991
    [34] Poulos H G An approximate numerical analysis of pile-raft interaction, Int. Jnl. Num. Anal. Mechs. In Geomechs., 18,73-92,1994
    [35] Poulos H G, Methods of analysis of piled raft foundations, A report prepared on behalf of technical committee Tc18 on piled foundations, 2001
    [36] Randolph M F. Design methods for pile groups and piled rafts. Proc.12th Int.Conf. Soil Mechs. And Foundn. Eng. New Delhi, 5, 61-82,1994
    [37] Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(12): 1465-1488.
    [38] Randolph M F, Wroth C P. Driven piles in clay—the effects of installation and subsequent consolidation. Geotechnique, 1979, 29(4):423-439.
    [39] Trochanis A M, Bielak J, Christiano P. Simplified model for analysis of one or two piles. Journal of the Geotechnical Engineering, ASCE, 1991a, 117(3): 448-466.
    [40] Trochanis A M, Bielak J, Christiano P. Three-dimensional nonlinear study of piles. Journal of the Geotechnical Engineering, ASCE, 1991b, 117(3):429-447.
    [41] Van W F and Clerq Y. de, A piled raft interation model, Geotecnica. No.73,1-23,1995
    [42] Vesic A S.桩与土体系中的荷载传递,地基与基础译文集,No.5,《桩基础》,中国建筑工业出版社,1982,60-79
    [43] Zhuang G M, Lee I K and Zhao X H. Interactive analysis of behaviors of raft-pile foundations, proc. Geo-Coast, Yokohama, 1991(2): 759-764
    [44] 安关峰.桩基沉降的时效分析,地下空间,2000,20(2):86-91
    [45] 陈福全,龚晓南,马时冬.桩的负摩阻力现场试验及三维有限元分析,建筑结构学报,2000,21(3):77-80
    [46] 陈广峰,米海珠.黄土地层中锚杆受力性能试验分析.甘肃工业大学学报.2003,29(1)116~119.
    [47] 陈开旭,安关峰,鲁亮.采用有厚度接触单元对桩基沉降的研究,岩土力学,2000,21(1):92-96
    [48] 程良奎.岩土锚固的现状与发展.土木工程学报,2001,34(3):7~12.
    [49] 程良奎,范景伦,韩军等.岩土锚固.北京:中国建筑工业出版社,2002,85.
    [50] 程良奎,胡建林.土层锚杆的几个力学问题.中国岩土锚固工程协会主编.岩土工程中的锚固技术.北京:人民交通出版社,1996
    [51] 陈龙珠,梁国钱,朱金颖等.桩轴向荷载—沉降曲线的一种解析算法,岩土工程学报,1994,16(6):30-38
    [52] 陈明中,龚晓南,严平.单桩沉降的一种解析法,水利学报,2000,(8):70-74
    
    [53] 陈仁朋.软弱地基中桩筏基础工作性状和分析设计方法研究.浙江大学博士学位论文,2001
    [54] 陈善雄.柔性桩荷载传递特性与有效桩长分析。岩土工程师,1995,7(3),1~8.
    [55] 池跃君,敖立新,顾晓鲁.超长桩荷载传递机理的计算分析,特种结构,2000,17(4):12-15
    [56] 董建国,赵忠.高层建筑桩箱(筏)基础沉降机理分析,同济大学学报,1997,25(6):663-668
    [57] 董建国,赵锡宏.高层建筑地基基础—共同作用理论与实践.上海:同济大学出版社.1996
    [58] 杜广印,黄峰,李广信.抗压桩与抗拨桩侧阻的研究.工程地质学报,2000,8(1):31~36.
    [59] 段继伟.柔性群桩—承台—土共同作用的数值分析.浙江工业大学学报,1995,23(4):354~363.
    [60] 费勤发,马海龙.桩长及水泥掺入量对柔性桩承载力等的影响.岩土力学.1997,18(1),54~59.
    [61] 郭增强,曲力群,吴兴序.嵌岩抗拨桩的试验受力分析.东北公路,2003,26(3):80~82.
    [62] 黄峰,李广信.砂土中抗拔桩位移变形的分析.土木工程学报,1999,32(1):31~36.
    [63] 黄绍铭,斐捷,贾宗元等,软土中桩基沉降计算,第四届土力学与基础工程学术会议论文集,中国建筑工业出版社.1986年
    [64] 黄绍铭,王迪民,斐捷等.减少沉降量桩基的设计与初步实践,第六届土力学与基础工程学术会议论文集,同济大学出版社,中国建筑工业出版社,1991年
    [65] 建筑桩基技术规范(JGJ94—94)及条文说咧.中国建筑工业出版社,1995.
    [66] 姜连馥.土层锚杆剪切位移—传递函数分析方法.兰州铁道学院学报(自然科学版),2002,21:19~22.
    [67] 姜伟.用于地下工程中抗上拔荷载的桩锚技术综述.地下空间,2002,22(2):123~126.
    [68] 孔宪宾,余跃欣,李炜等.土—锚杆相互作用机理的研究.工程力学,2000,17(3):80~86.
    [69] 李峰.土层锚杆应力传递特征及其预应力水平分析.中国煤田地质,2000,12(2):39~41
    [70] 李作勤.摩擦桩的荷载传递及承载力的一些问题,岩土力学,1990,11(4):1-12
    [71] 梁明德,刘岳.刚性群桩的非线性分析,岩土工程学报,1995,17(6):23-31
    [72] 刘金砺.桩基础的设计与计算.北京:中国建筑工业出版社,1990
    [73] 刘金砺,黄强.竖向荷载下群桩变形性状及沉降计算,岩土工程学报,1995,17(6): 1-13
    [7
    
    [74] 刘金砺,袁振隆,粉土中钻孔群承台—桩—土的相互作用性状与承载力计算,岩土工程学报,
    [75] 罗惟德.单桩承载机理分析与荷载—沉降曲线的理论推导,岩土工程学报,1990,12(1):35-44
    [76] 邱钰,胡雪辉,刘松玉.用荷载传递法计算深长大直径嵌岩桩单桩沉降.土木工程学报,2001,34(5):72-75
    [77] 邱钰,刘松玉,周琳.嵌岩桩单桩沉降计算的一种简化模型.东南大学学报,1999,29(5):131-136
    [78] 舒翔,王福忠.确定柔性桩复台地基有效桩长的简化方法.工业建筑,2001,31(11):16~17.
    [79] 王成华,陈环.桩间土承担荷载的计算分析,第五届土力学以及地基基础工程学术会议论文集;中国建筑工业出版社.1990.
    [80] 王建宁.按共同变形原理计算地锚工程中黏结型锚头内力[A].岩土锚固工程新技术.北京:人民交通出版社,1998,52~63.
    [81] 汪中卫,高彦兵.扩底桩的荷载传递分析,住宅科技,1998,(9):3-6
    [82] 王炳龙.用土的弹塑性模型有限元法确定桩的荷载—沉降曲线,上海铁道大学学报,1997,18(1):48-54
    [83] 王贤能,叶蓉,周逢君.土层抗浮锚杆试验破坏标准选取的建议.地质灾害与环境保护,2001,12(3):73-78
    [84] 吴兴序,于志强,庄卫林.岩层中抗拔桩的承载力计算方法探讨.西南交通大学学报,2002,37(2):190~194.
    [85] 谢涛,袁文忠,蒋泽中等.嵌岩抗拔桩抗拔承载力试验研究.四川科学研究,2002,28(4):44~46
    [86] 许宏发,国煜,廖铁平等.截面桩的抗拔机理研究.工程勘查,2003,4~6.
    [87] 许宏发,钱七虎,金丰年.描述抗拔桩荷载—位移曲线的幂函数模型.岩土工程学报,2000,22(5):622-624
    [88] 许礼深,赵滇生,胡同森.用有限元法确定单桩的承载力,浙江工学院学报,1994.(4):63-68
    [89] 许少军,王成华.缺陷桩荷载沉降性状的非线性有限元分析,岩土力学,20(3):72-77
    [90] 阳吉宝.超长桩的荷载传递机理,岩土工程学报,1998,20(6):108-112
    [91] 杨小礼,李亮,杨世忠.嵌岩桩极限承载力的非线性分析,湘潭矿业学院学报,1997,12(4):17-21
    [92] 尤春安.全长粘结式锚杆的受力分析.岩石力学与工程学报.2000,19(3):339~341.
    [93] 俞炯奇.非挤土长桩性状数值分析,浙江大学博士论文,2000
    [94] 袁建新,钟晓雄.桩荷载与变位的数值模拟分析,岩土力学,1991,12(1):1-8
    
    [95] 袁文忠,于志强,谢涛.岩基强度对嵌岩抗拔桩承载力影响的试验研究.2003,38(2):178~182.
    [96] 曾友金,章为民.水泥搅拌桩有效桩长的确定.水利水运工程学报,2002,(3):14~2.
    [97] 曾友金,章为民.深厚覆盖土层中校的有效桩长。东南大学学板(自然科学版),2002,32(5):823~828.
    [98] 曾友金,章为民.按桩顶沉降控制法确定水泥搅拌桩有效桩长.工业建筑,2003,33(1):32~38.
    [99] 张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报,2002,24(2):188~192.
    [100] 张乐文.岩土锚固理论研究之现状.岩土力学,2002,23(5):627~631
    [101] 张尚根,李刻铭,吴步旭等.扩底抗拨桩的变形分析.工业建筑,2003,33(6):40~41.
    [102] 张尚根,涛,峰等.抗拨桩的变形分析.工业建筑,2002,32(11),40~42.
    [103] 张永谋,杨敏.层状地基中单桩荷载与沉降的数值模拟,工程勘察,1999(2):1-4
    [104] 张志勇.扩底单桩临界桩长的数值模拟,武汉水利电力大学学报,2000,33(3):36-38
    [105] 张忠苗.软土地基超长嵌岩桩的受力性状,岩土工程学报,2001,23(5):552-556
    [106] 尹道清.韶关市西河污水处理厂生化池水泥砂浆钢筋锚杆抗拔实验.岩土工程界,2002,5(6):62-64
    [107] 朱晓平,框架结构—基础—非线性地基共同作用,同济大学硕士学位论文,1989
    [108] 赵东亮.水泥搅拌桩校长的优化设计.岩土工程技术.2002(1):18~21.
    [109] 朱金颖,陈龙珠,葛炜.层状地基中桩静载试验数据的拟合分析,岩土工程学报,1994,20(3):34-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700