用户名: 密码: 验证码:
QD-SOA的动态仿真模型及其在光信号处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前光网络的发展中,现有网络节点的光/电(电/光)转换的局限已经成为进一步扩大带宽的“瓶颈”,光分组交换可以解决这一问题。对光信号进行全光处理成为光分组交换研究中最关键的问题之一。量子点半导体光放大器(QD-SOA)与普通半导体光放大器(Bulk SOA)和量子阱半导体光放大器(QW-SOA)相比,具有低注入电流、低温度灵敏性、低线宽增强因子、高微分增益、高调制带宽、增益恢复时间快等优点,适合应用于全光信号处理。本文主要针对QD-SOA的动态仿真模型、放大特性及其在光分组交换网络中全光信号处理方面的应用进行研究,主要工作内容如下:
     1.根据QD-SOA的电子跃迁速率方程和光在QD-SOA中传播的光场方程,并采用牛顿法和四阶龙格-库塔法,建立了QD-SOA的动态仿真模型。
     2.利用建立的动态仿真模型,对QD-SOA的一些放大特性进行了数值仿真研究。包括最大模式增益、有源区的长度、以及基态与激发态的跃迁时间对输出光信号的消光比、脉宽和增益的影响,对影响因素进行了分析,提出了优化QD-SOA设计参数应注意的问题。
     3.分析了基于QD-SOA交叉增益调制(XGM)的波长转换器中,有源区长度L、基态与激发态之间的跃迁时间、信号光功率对输出光的消光比和脉冲宽度的影响。得出,增加有源区长度L、同时增加基态与激发态之间的跃迁时间、增加输入信号光功率都可以提高输出探测光的消光比、增加脉冲宽度的结论。
     4.提出了一种基于QD-SOA的XGM全光逻辑或非门方案。对方案的可行性进行了研究,输出的逻辑门没有码型效应,输出的消光比达到11dB,信号光速率可以达到400Gb/s。
In the development of optical network, the limit of the O/E (E/O) conversion in the switching nodes has been the bottleneck of further improving the bandwidth of the network. Optical packet switching (OPS) can solve this problem. All-optical signal processing is one important part of the researches on OPS. Comparing to bulk Semiconductor Optical Amplifier (SOA) and Quantum-well Semiconductor Optical Amplifier (QW-SOA), Quantum dot Semiconductor Optical Amplifier(QD-SOA) have many unique advantages, such as lower threshold current, lower temperature sensitivity, lower linewidth enhancement factor, high differential gain, high modulation bandwith and faster gain recovery. Owing to so many advantages, QD-SOA is much more adapted to be used in the all-optical signal technology. The amplifying characteristics of QD-SOA, the numerical fragment model of QD-SOA and it’s applications in the all-optical signal processing related to OPS are investigated in this dissertation. The main research works are listed as follows:
     1. Based on the rate equations of the electron transition and the traveling-wave equation for signal wave in the QD-SOA, the numerical fragment model of QD-SOA is established. The Newton method is adopted to search the initial values of the model and the 4th order Runge-Kutta method is used to calculate the dynamic variation.
     2. The research activities involve the influences from the device-related parameters: the maximum modal gain, the length of the active layer, the transition time between the excited-state and ground-state. The characteristics of output pulse signal including extinction ratio, pulse width and gain have been chosen to the observing and comparing objects. The analysis in theory has also been provided to explain the simulation results.
     3. The study of wavelength conversion based on QD-SOA’s cross gain modulation (XGM) focus on the relationships between the extinction ratios, the converted pulse width and the length of active region, the input signal power, the electron transition time. The results show that the extinction ratio can be improved by increasing the length of active region, the input signal power or the electron transition time, but companying with the increase of output pulse width.
     4. A novel scheme of all-optical NOR gate based on the gain properties of QD-SOA is proposed.The feasibility of the scheme is investigated by simulation. No pattern effects is observed at the outputs of the NOR gate. The extinction of the output signal are higher than 11 dB and the processing rate reaches 400Gb/s.
引文
[1]张正线.全光网络中的全光分组交换技术.电讯技术.1999.6.82-87
    [2]黄安鹏,谢麟振,徐安士等.光分组交换的关键技术.通讯世界.2001.10.17-19
    [3]黄学田.下一代光网络中的全光信息处理技术.[博士学位论文].北京:北京邮电大学.2005.1-8
    [4]谢世钟,陈明华,董毅等.光分组交换网络技术展望.清华大学学报(自然科学版).2002.VOL 42.No.7.855-859
    [5] A.J.Poustie,K.J.Blow,A.E.Kelly,etal.All-optical binary half-adder. Optics Communications, 1998, 156.22~25
    [6] A.J.Poustie, K.J.Blow, A.E.Kelly et al. All-optical full adder with bit-differential delay.Optics Communications.1999,168:89~93
    [7] A.J.Poustie, K.J.Blow, A.E.Kelly et al. All-optical parity checker with bit-differential delay. Optics Communications, 1999,162.37~43
    [8]王颖.基于半导体光放大器的全光逻辑门.[硕士学位论文].武汉:华中科技大学.2004.1-8
    [9] I.Glesk, R.J.Runser, P.R.Prucnal. New generation of devices for all optical communications. Acta Physica slovaca, 2001, 51(2),151-162
    [10] C.Bintjas, M.Kalyvas, G. Theophilopoulos et al. 20Gb/s all-optical XOR with UNI gate. IEEE Photonics Technology Letters, 2000, 12(7),834~836
    [11] T.Fjelde, D.Wolfson, A.Kloch et al. Demonstration of 20Gbit/s all-optical logic XOR inintegrated SOA-based interferometric wavelength converter. Electronics Letters, 2000, 36(22),1863~1864
    [12] H.Soto, J.Topomondzo, D.Erasme. Experimental demonstration of all-optical logic gates using cross-polarization modulation in a semiconductor optical amplifier. Proceedings of SPIE, 2002, 4935: 495-502
    [13] Jae Hun Kim, Young Min Jhon. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 2002, 14(10):1436-1438
    [14] Ali Hamie, Ammar Sharaiha, Mikael Guegan et al. All-optical logic XOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photonics Technology Letters,2002, (10):1439~1441
    [15] Soeren Lykke Damielsen, Peter Bukhave Hansen and Kristian E.Stubkjaer,Wavelength Conversion in Optical Packet Switching, Journal of Lightwave Technology, Vol.16, No.12, December 1998, 2095-2107
    [16] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. Journal ofLightwave Technology, 1996, vol. 14, no. 6,955-966
    [17] Zhang Xinliang, Huang Dexiu, Sun Junqiang, et al, Extinction ratio improvement in XGM wavelength conversion based on novel scheme[C].Communication Technology Proceedings.WCC-ICCT2000,vol.2,1571-1574
    [18] Yi Dong, et al, Improving performance using waveguide filter and optical probe and signal powers for all-optical wavelength conversion[C].OFC2000,TuF2
    [19]施伟伟,全光波长转换的研究.[硕士学位论文].北京:清华大学.2004.8-9
    [20] Danielsen S L, et al. ALL optical wavelength conversion schemes for increased input power dynamic range [J].IEEE Photonics Technology Letters, Vol 10,No.1,1998.60-62
    [21] Tomoyuki Akiyama, Mitsuru Sugawara, Yasuhiko Arakawa, Quantum-Dot Semiconductor Optical Amplifiers. Proceedings of the IEEE.Vol.95,No.9,September 2007.1757-1765
    [22] O.Oasaimeh. Ultrafast dynamic properties of quantum dot semiconductor optical amplifiers including line broadening and carrier heating. IEEE Proc,Optoelectron,Vol,151,No,4,August 2004
    [23] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, et al , Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices, IEEE J. Quantum Electron., vol. 37, Aug. 2001. 1059–1064
    [24] M.Sugawara, N.Hatori, T.Akiyama, et al.Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40 Gbit/s, Proc. Lasers and Electro-Optics 2001
    [25] P. Bhattacharya, D. Klotzkin, O. Qasaimeh, et al. High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers, IEEE J. Select. Topics Quantum Electron, vol. 6, May,2000,426-438
    [26] P. Bhattacharya, K. Kamath, J. Singh, D. Klotzkin, J. Phillips, H. Jiang, N. Chevela, T. Norris, T. Sosnowski, J. Laskar, and M. Ramanamurty, In(Ga)As/GaAs self organized quantum dot laser: DC and small signal modulation properties, IEEE Trans. Electron. Devices, vol. 46, May 1999,871
    [27] Y.Ben-Ezra, B.I.Lembrikov, M.Haridim.Acceleration of Gain Recovery and Dynamics of Electrons in QD-SOA. IEEE Journal of Quantum Electronics.Vol,41.No,10.October 2005.1268-1273
    [28] Y.Ben-Ezra, M.Haridim, B.I.Lembrikov, Theoretical analysis of gain-recovery time and chirp in QD-SOA,IEEE photon.technol.lett,Vol.17,no.9.2005.1803-1805
    [29] Xiaoxu Li and Guifang Li, Comments on“Theoretical analysis of gain-recovery time and chirp in QD-SOA”,IEEE photon.technol.lett,Vol.18,no.22.pp.2434-2435,nov.2006.2434-2435
    [30] J.Molina Vazquez, H.H.Nisson, J.-z.Zhang. et al. Linewidth Enhancement Factor ofQuantum-Dot Optical Amplifiers. IEEE Journal of Quantum Electronics.Vol,42. No,10. October 2006. 986-992
    [31] Heinz Kalt, Michael Hetterfich. Optical of Semiconductors and Their Nanostructures. Springer,2004.248-271
    [32] P. Brosson, Analytical model of a semiconductor optical amplifier, J. Lightwave Technol, 1994 ,Jan,vol.12, no.1,49-54
    [33] M. J. Connelly,“Wideband Semiconductor Optical Amplifier Steady-state Numerical Model”, IEEE J. Quantum Electron. 2001,Vol. 37(3),439-447
    [34] A.A.Dikshit, J.M.Pikal, Carrier distribution, gain, and lasing in 1.3-μm InAs-InGaAs quantum-dot laser. IEEE J. Quantum Electron.VOL.40.NO.2.February 2004, 105-112
    [35] G.P.Agarwal . N.k.Dutta, Semiconductor laser. New York: Van Nostrang-Reinhold,1993
    [36] L.A.coldren and S.W.Corzine.diode laser and photonic integrated circuits. New York:Wiley,1995
    [37] Omar Qasaimeh. Characteristics of Cross-Gain(XG) wavelength conversion in Quantum Dot Semiconductor Optical Amplifiers, IEEE photon technology letter, Vol.16, No.2. Feb2004. 1803-1805
    [38] M. J. Connelly, Wideband Semiconductor Optical Amplifier Steady-state Numerical Model, IEEE J. Quantum Electron. 2001, Vol. 37(3). 439-447
    [39]林成森,数值分析,科学出版社,2006,280-286
    [40] David Kincaid,Ward Cheney (王国荣译)数值分析,机械出版社,2005,430-432
    [41] Zhuqing Zhu, Shaotong Feng, Faqinag Wang, Sinulation on all-optical logic NOR functionality in quantum dot semiconductor amplifier Proc. of SPIE.Vol.6020.602015.2005
    [42] M.Sugawara, H, Ebe, N, Hatori, etal. Theory of optical signal amplification, and processing by quantum-dot semiconductor optical amplifiers , Phys, rev.B.VOL.69
    [43] ]M.Sugawara, T.Akiyama, N.Hatori, etal. Quantum-dot semiconductor optical amplifiers for high-bie-rate signal processing up to 160Gb s-1 and a new scheme of 3R regenerators.Meas, Sci. Technol, VOL.13.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700