用户名: 密码: 验证码:
新型钛基体二氧化铅电极的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电化学工业的不断发展,传统的阳极材料越来越表现出其局限性。二氧化铅电极因具有化学性质稳定、耐蚀性好、导电性好等特性,而广泛应用于各类工业生产。本文主要就制备性能优良的二氧化铅电极及其直接测定水体中COD和苯酚降解进行了探索与研究,为电化学工业电极的选用提供技术基础。因此,具有一定的学术和应用价值。
     在总结现有Ti/PbO_2电极制备方法的基础上,提出在钛基体上热涂覆锡锑氧化物底层的新方法;然后在碱性条件下电沉积a-PbO_2为中间层;最后在酸性条件下电沉积β-PbO_2为表面层。
     采用XRD和SEM对制备的电极进行晶相分析和表面形貌分析。结果表明,表面层中主要是β-PbO_2,且电极表面均匀平整,无裂纹等缺陷,晶粒排布紧密规则。对苯酚降解结果表明电极具有良好的电催化性能。线性扫描伏安曲线表明,电极具有较高的析氧电位,实现了电极的高催化活性和宽电位窗口,适应于各种还原性有机物的降解。
     探讨了Ti/PbO_2电极直接测定水体中COD的方法。确定最佳测定条件为:工作电极电压为1.4V,Na_2SO_4电解液浓度为0.02mol/L,在一定的搅拌速度下,电解1.5min,测定其电流变化值;COD测定线性范围为20-200mg/L。每次测定后,对二氧化铅电极进行再生。再生液浓度为0.5mol/L,再生电压1.8V,再生时间为2min。实验采用增大电位气泡更新法使电极得到充分再生,保证了结果的准确性和重现性。该法用于实际水样与标准方法对照测定,结果表明,二者具有较好的一致性。
     通过实验确定了Ti/PbO_2电极电催化氧化降解苯酚的最佳工艺条件为:电流密度30mA/cm~2、Na_2SO_4电解质浓度0.1mol/L、pH3.0、降解时间为2.5h。在此条件下,苯酚去除率可达91.3%。苯酚降解过程中不同时间的紫外光谱表明,苯酚的降解是一个复杂的过程,反应过程经历了苯醌中间产物产生和进一步降解的步骤。通过对苯酚降解过程动力学方程的讨论可知,苯酚的电催化氧化降解符合表观一级反应动力学特征。
With the development of the electrochemistry industy, conventional anodes showed more and more limitations. Lead dioxide is characterized by stable chemical property, anticorrosion, high electric conductivity, etc, So it is applied in various industries. In this paper, preparation of the excellent performance lead dioxide electrode and it's usage for direct determination COD and phenol degradation were studied. The results provided technical basis for choosing electrodes for electrochemistry industy production and had certain theoretic significance and applied value.
     In the basis of summarized current methods of Ti/PbO_2 electrode preparation, a new method that covered stannum and antimony mixed oxide compounds as bottom was provided in this paper;Thenα-PbO_2 was electrodeposited in alkaline medium as mesosphere; At last, electrodepositedβ-PbO_2 in acidity medium was used as surface layer.
     The crystal phase and the micrographs of the electrode surface layer were analyzed by SEM and XRD respectively.The results showed that the Ti/PbO_2 electrode surface layer,which was uniform、even and crack-free, crystal grain distribution was closely and regular, wasβ-PbO_2 mainly. The results of phenol degradat test showed that the electrode have high catalytic activity.Curve of linear sweep voltammetric showed that the electrode had high oxygen evolution potential, which realized high catalytic activity and wider potential window, and could adapt to various organic compounds degradation.
     Direct determination of COD by Ti/PbO_2 electrode was discussed. By experiment the optimum determination condition was as follows: working voltage was 1.4v, sodium sulfate electrolyte concentration was 0.02 mol/L, measuring the current value change after electrolysis 1.5min, the optimum COD determination range was 20-200mg/L.After determination, the Ti/PbO_2 electrode was regenerated. The optimum regeneration condition was as follows: regeneration solution concentration was 0.5mol/L, regeneration voltage was 1.8v and the regeneration time was 2.0min; The surface of electrode was regenerated by bubbling in order to get a good reproducibility. The results showed that the method keeps good consistency with standard method when used in actual water samples.
     The optimum condition of electrocatalytic oxidation degradation of phenol waste water using Ti/PbO_2 electrode was determined as follows:current density was 30mA/cm~2, sodium sulfate electrolyte concentration was 0.1mol/L, pH was 3.0, degradation time was 2.5h. Under this condition, the phenol remove rate was 91.3%.The ultraviolet spectrum of phenol degradation at different time showed that phenol degradation was a complex process, which experienced quinone intermediate products and then advanced degraded. The kinetics study showed that phenol degradation reaction accorded apparently with the-first-order kinetics.
引文
[1] 马淳安.有机电化学合成导论[M].北京:科学出版社.2002,5-6
    
    [2] P.Canizares, J.Lobato, R.Paz, et al. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes[J].Water Research.2005,39 (12): 2687-2703
    
    [3] 方度,蒋兰荪,吴正德.氯碱工艺学[M].化学工业出版社.1990,39-40
    
    [4] 金利通,仝威,徐金瑞等.化学修饰电极[M],华东师范大学出版社.1992,12-15.
    
    [5] A. Mottram Couper, Derek Pletcher, Frank C Walsh. Electrode material for Electrosythesis[J]. Chem Rev, 1990, 90: 837-865.
    
    [6] 陈康宁.金属阳极[M],华东师范大学出版社,1989.26-34
    
    [7] 陈延禧.电解工程[M].天津:天津科学技术出版社,1993.
    
    [8] H.B.Beer.Electrodes and Coating thereof[P].U.S.Patent 3632498(1972).
    
    [9] 张招贤.钛电极工学(第二版)[M].北京:冶金工业出版社,2003:303-304.
    
    [10] 纪红,周德瑞,王丽等.钛基Ru-La-Sn涂层阳极的电催化性能[J].稀有金属材料工程,2004,33(8): 877-880.
    
    [11] Camara O R, Trasatti S. Surface electrochemical properties of Ti/(RuO_2+ZrO_2) electrodes[J].J Electrochim Acta, 1996,41:419-427.
    
    [12] 王惠君.二氧化铅电极的制备及其应用[J].浙江海洋学院学报(自然科学版),1999,18(2):165-167.
    
    [13] 蔡天晓,鞠鹤,武宏让.β-PbO_2电极的改性制备及性能[J].表面技术,2002,31(5):22-23.
    
    [14] 张招贤.电解提取有色金属中活性涂层钛电极的研究[J].中国稀土学报,1998,8(16):875-878.
    
    [15] 曾曙,王新民.湿法冶金中钛基二氧化锰阳极的研究[J].广东有色金属学报,1996,6(1):27-32.
    
    [16] KR ISTOF Janos, SZILAGYI Tamas, HORVAHT Erzsebet, etc. Investigation of Ti/IrO_2-Ta_2O_5 thin film evolution[J].Thermo chemical Actal.2004,413:93-99.
    
    [17] HU J M, MENG H M, ZHANG J Q, etc. Degradation mechanism of long service life Ti/IrO_2-Ta_2O_5 oxide anodes in sulphuric acid[J].Corrosion Science,2002:44,1655-1661.
    
    [18] 张招贤,伍超群.IrO_2·Ta_2O_5涂层钛阳极失效前后形貌的研究[J].广东有色金属学报,2003,13(1): 37-40.
    
    [19] 张招贤.二氧化锰涂层钛电极的研制[J].广东有色金属学报,1991,1(2):119.
    
    [20] B.Correa-Lozano, Ch.Comninellis, A.D.Battisti. Service life of Ti/SnO_2-Sb_2O_5 anodes[J]. J.Appl. Electochem. 1997, (27): 970-974
    
    [21] L.Lipp, D.Pletcher. The Preparation and Characterization of tin Dioxide Coated Titanium Electrodes [J]. Electrochim, Acta, 1997,42(7): 1091-1097
    
    [22] 王峰.一种新型PbO_2电极的研制[J].应用化学.2002,(19):193-195
    
    [23] F.Montilla, E.Morallon, A.De Battisti, J.L.V bzquez. Preparation and Characterization of Antimony- Doped Tin Dioxide Electrodes. Part I:Electrochemical Characterization[J].J.Phy.Chem.B.2004, (108):5036-5043
    
    [24] 王桂清,刘敏娜.塑料基体上化学镀二氧化铅[J].电镀与环保,1995,15(3):20-21.
    
    [25] 王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备[J].材料保护,1995,28(3):18-19.
    
    [26] 周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试[J].表面技术,2000,28(2): 15-18.
    
    [27] 周明华,戴启洲,雷乐成.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学学 报,2004,20(8):871-876.
    
    [28] 郑一雄.石墨基二氧化铅阳极的制备和应用[J].华桥大学学报(自然科学版),1998,19(4):358-361.
    
    [29] Lee, Jaeyoung, Hamilton Varela. Electrodeposition of PbO_2 onto Au and Ti substrates[J]. Electrochemistry Communication,2005,5(2):646-652.
    
    [30] 于德龙,覃奇贤.低析氧过电位PbO_2电极的研究[J].材料研究学报,1995,9(3):250-253.
    
    [31] Casellato U, Cattarin S,MusianiM. Preparation of porous PbO_2 electrodes by electrochemical deposition of composites[J]. Electrochemical Acta,2003(48):3991-3998.
    
    [32] 王峰,俞斌.Pt/PbO_2电极在COD测定中初探[J].南京工业大学学报,2002,24(2):93-96.
    
    [33] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead dioxide electrodeposition and it sapplication: influence of fluoride and iron ions[J].Journal of Electroanalytical Chemistry, 1989,454(1-2): 203-208.
    
    [34] S. R.Ellis. The lead dioxide electrode[J]. J. Appl. Electochem.1986,2 (16):159-167.
    
    [35] 植思稔.供电解用的二氧化铅电极及其制造方法[P].中国专利:87106028,1987.
    
    [36] Munichandraiah.N. Insoluble anode of porous lead dioxide for electrosynthesis: preparation and characterization[J].J Appl Electrocheml,1987(17)1:22-23.
    
    [37] Marsen, J.Electrochemical oxidation of oxalate in alkaline solutions[J].Canadian of Chemical Engineering, 1993,71(2):218-225.
    
    [38] Ueda, M.Reative d.c. Sprttering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films[J]. J.Appl Electrochem,1995, (25):817-822
    
    [39] 黄永昌.含锡锑氧化物底层的PbO_2电极[J].上海交通大学学报,1992,(4):25-33.
    
    [40] 梁镇海.硫酸中钛基二氧化铅阳极研究[J].稀有金属与工程,2001,30(3):232-234.
    
    [41] 许学敏,张秋香.析氧体系阳极制备及性能[J].化学世界,1998,(1):26-29.
    
    [42] Fukasawa, Akira. Production of comnercial large lead dioxide electrode-application of a new-tepe lead dioxide electrode to electrolytic refining[J].J Mining and Metallurgical Institute of Japan. 1984, (100):599-602.
    
    [43] Petersson, Ingela. Parameters influencing the ratio between clectrochemically formed a-and β-PbO_2 [J].J Power Sources.1998,76 (1):98-105.
    
    [44] 冯玉杰.电化学技术在环境工程中的应用[M].北京:化学工业出版社.2002
    
    [45] Gilory D.Stevens R. The electrodeposition of lead dioxide on titanium[J].J AppL Electrochem, 1980, (10):511-525.
    
    [46] AI Shi-Yun,Li Luo-Ping, et al. Electrochemical deposition and Properties of Nanometer -structure Ce-doped Lead Dioxide Film Electrode[J].Chinese Journal of Chemistry,2005, 23,71-75.
    
    [47] Kim L Pamplin,Dennis C Johnson. Electrocatalysis of anodic oxygen-transfer reactions:Oxidation of Cr(Ⅲ) to Cr (Ⅵ) at Bi(Ⅴ)-doped PbO_2-film electrodes[J].J.Electrochemical Society, 1996,143 (7):2119-2125.
    
    [48] A.B.Velichenko, R.Amadelli. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts[J].Electrochimica Acta,2000,45:4341-4350.
    
    [49] Mahato.B.K, Tiedemann.W.H. Linear potential sweep of lead-acid battery electrodes containning trace Te, Sb, As ,Co and Ni[J].J Electrochem Soc, 1983,130 (11):21-39.
    
    [50] Fred.D, Gilbson Jr. Inert lead dioxide anode[P].U.S. Patent 294579J, 1960 (7).
    
    [51] 张海波.稀土改性二氧化铅电极制备及电催化降解硝基苯的研究[D].哈尔滨:哈尔滨工业大学 2006;19-52.
    
    [52] 李善评,胡振,孙一鸣等.新型钛基PbO_2电极的制备及电催化性能研究[J].山东大学学报(工学 版).2007,37(3)109-113.
    
    [53] 吴辉煌.水中有机污染物电化学清除的研究进展[J].环境污染与防治,2000,4:39-42.
    
    [54] 张招贤.电化学技术在环境工程中的应用[J].氯碱工业,1996,8:17-23.
    
    [55] O.Simond, V.Schaller, Ch.Comninellis. Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J].Electrochimica Acta,1997,42,2009-2012.
    
    [56] Ch.Comninellis, G.P Vercesi. Characterization of DSA-type oxygen evolving electrode-choice coating[J]. J Appl Electrocheml,1991,21:335-345.
    
    [57] Ch.Comninellis, Pulgarin C. Anodic oxidation of phenol for wastewater treatment[J]. J Appl Electochem, 1991,21:703-708.
    
    [58] Ch.Comninellis, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO_2 anodes[J]. J Appl Electochem, 1993,23:108-112.
    
    [59] 郑一雄.β-氧化铅电极在制各电解锰中的应用[J].无机盐工业,1999,31(2):13-15.
    
    [60] 王留成,徐海生,赵建宏.阳极在硫酸铬电解氧化制备重铬酸时的电极行为[J].应用化学,2003,20 (5):483-496.
    
    [61] Toomey, J. Electrochemical synthesis and simultaneous purification process[P]. W09119020,1991.
    
    [62] 李伟平,韦汉道,李亚琛.二氧化铅膜电极用于电解合成苯醌的研究[J].广州化学,1999(1):26-29.
    
    [63] Iniesta J. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2[J].Wat. Res,2001 (35):3291-3300.
    
    [64] Schumann U, Griindler P. Electrochemical degradation of organic substances at PbO_2 anodes: monitoring by continuous CO_2 measurements[J].Wat. Res,1998(32):2835-2842.
    
    [65] Amadelli R. Electrochemical oxidation of trans-3-4-dihydroxycinnamic acid at PbO_2 electrodes: direct electrolysis and ozone mediated reactions compared[J]. Electrochemical Acta,2001(46):??341-347.
    
    [66] Panizza M, Cerisola G. Influence of anode material on the electrochemical oxidation of 2- naphthol: parti. cyclic voltammetry and potential stepexperiments[J]. Electrochemical Acta,2003(48): 3491-3497.
    
    [67] 周明华,戴启洲,雷乐成等.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学, 2004,20(8):871-876.
    
    [68] 莱因斯,皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2005:10-15.
    
    [69] 方度.氯碱工业学[M].化学工业出版社,1990:69-96.
    
    [70] 邵志刚,衣宝廉,张新革等.钛基二氧化铅平板电极的镀制[J].电化学.1997,3(3):319-324.
    
    [71] 张招贤.钛电极工学(第二版)[M].北京:冶金工业出版社,2003:
    
    [72] 王翠,史佩红等.电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-52.
    
    [73] Velichenko A.B. Mechanism of lead diocide electrodeposition[J].J Electroanalytical Chemistry. 1996,(45):127-132.
    
    [74] 陈国栋.电沉积PbO_2电极的析氧行为[J].电池,1998,28(4):160-163.
    
    [75] 乔庆东.钛基二氧化铅电极的制备及其应用[J].应用化学,2000,17(5):555-557.
    
    [76] 张招贤,赵国鹏,胡耀红.应用电极学[M].北京:冶金工业出版社,2003:288-294.
    
    [77] 陈康宁.金属阳极[M].华东师范大学出版社,1989:60-62.
    
    [78] 张招贤,郑团.涂层钛阳极强化寿命试验电解因素的选择[J].氯碱工业,2004,5(5):10-11.
    
    [79] 魏复盛.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002:460-462.
    
    [80] Mike.P.Line,刘学文.一种新型的COD在线自动监测仪[J].中国仪器仪表,2001.(6):14-17.
    
    [81] Comninellis Ch, Pulgarin CAnodic oxidation of phenol for wastewater treatment using SnO_2 anodes[J]. J Appl Electrochem,1991,21(8):703-708.
    
    [82] 查全性,电极过程动力学导论(第三版)[M].北京:科学出版社,2002.143-146.
    
    [83] 王东田.魏杰.电催化氧化法降解水中苯酚[J]冲国给排水,2003,19(4):37-38.
    
    [84] 刘正烈,周亚平.物理化学(下册)[M].北京:高等教育出版社,2001:203-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700