用户名: 密码: 验证码:
不同农业措施下东太湖水稻土N、P养分年流失比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取了太湖东岸地区黄泥土上13年的长期不同施肥处理某试验田进行了土壤全磷、树脂磷和水溶性磷的分析测定,通过质量平衡定理估算了黄泥土水稻土上不同处理下一年磷素的流失量,并在相邻的青紫泥水稻土地区选取了试验地点,观测不同农业措施下(包括施肥和种植的差异)氮磷的流失,并通过计算径流和侧渗流失得到一年内的氮磷流失量,同时根据不同施肥处理下产量和环境负荷的差异,评价了不同施肥措施下农田氮磷污染负荷与经济产量效益的差异,为寻找环境效应和经济效益的最佳切入点提供依据。本文的主要结论如下:
     在黄泥土水稻土上试验结果表明,年施磷量介于0-53kg/(hm~2·a),土壤全磷介于0.3-0.5g·kg~(-1)。根据土壤磷素的质量平衡,计算表明该水稻土存在的磷素流失量介于2-8kg/(hm~2·a),单施化肥下的流失量最大,为配施有机肥处理的2-4倍;水溶性磷的比率在0.2%-0.4%间,且不同施肥实践对其的影响不明显。但单施化肥有使亚表层树脂磷和水溶性含量提高的倾向。长期施用化肥配施大量鲜猪粪使树脂磷含量提高20-40mg/kg,但与长期施用化肥配施秸秆的处理一样没有发生在有机质增加下的磷活化而提高磷流失。坚持和推广配施适量有机肥,避免长期单施化肥,可以防止水稻土磷的强烈水流失。
     在青紫泥水稻土上的试验结果表明,几种处理冬春季节,氮磷的流失量分别只有1 kg/hm~2和0.03kg/hm~2左右,冬季前施入农田的大量氮磷未出现明显的流失。而开春之后追施的尿素以及增多的降雨对氮素流失影响较大,施肥处理中氮素流失表现出了对春季施肥的明显响应。而磷素的流失则较为平稳,呈现出背景流失的规律。
     水稻种植初期大量施肥后,施肥处理下稻田田面水和径流水中全氮全磷的含量分别达到了33mg/kg-18mg/kg和1.2mg/kg-0.4mg/kg,氮磷流失主要以径流的方式流失,氮流失主要以水溶性的氮为主,磷流失则以颗粒态磷为主,控制氮素要针对水溶性的铵氮,磷素则主要需控制颗粒态磷。常规种植下,水稻单季氮磷的面源污染分别达到了38.8kg/hm~2和0.95kg/hm~2,养分呈现出随机性降雨事件型的流失规律,其中梅雨时期几次大雨产生的氮磷径流流失占到了整个水稻生长季节的1/3-1/2,是对农田非点源污染贡献最大的阶段,施肥期与降雨高频期的重叠加剧了非点源对水环境的污染,所以梅雨时期应成为主要的控制阶段。水稻季节的氮磷流失远大于(20-30倍)冬春油菜季节,全年的非点源污染负荷主要集中在水稻生长季节。
     土壤原土检测磷均为初期土壤高于后期,并呈稳定下降的趋势,初期土壤中磷素流失的风险和潜能均较大。水稻生长期间土壤分级后各粒级间磷素的含量变幅较原土
Study on the nitrogen and phosphorus loss on the Huangnitu Paddy soil and Qingzini Paddy soil region, west to Taihu Lake in rape and rice season, was conducted, the experiment revealed the way and the main factors of N and P loss. Comparison on N and P loss and agricultural economic profits provided a better approach to balance agricultural goal, environment and economical profits. Main results of the thesis are summarized as follows:In the experiment pot of a Huangnitu, into which a scheme of longterm fertilization treatments has been put for 13 years, analysis of mobile forms of phosphorus was attached. Total P content vaired in arrange of 0.3-0.5g·kg~-1 under a range of total P fertilizer input of 0-53 kg/(hm~2·a). As estimated from the total P pool values by mass balance principle, the soil had been subject to water loss of 2-8 kg P ha~-1, with that under chemical fertilizers only being the biggest. The ratio of soluble P to the total was in a range of 0.2%-0.4%, without significant influence by the different fertilization schemes. While chemical fertilizer plus pig slurry manure applications had remarkably enhanced the resin-P pool by 20-40 mg·kg~-1 P mobilization was not observed due to combined application of chemical fertilizers and straw amendments despite of the increase of the SOM. Therefore, P water loss might have been active under continuous chemical fertilization alone in agriculture of this region. To reduce the present prominent non-point source pollution of N and P in this region, it is suggested that chemical fertilizers be applied in combination with an appropriate amount of manure or straw return.In the experiment pot of Huangnitu, N loss and P loss were about lkg/hm2 and 0.03kg/hm2 respectively under three treatments in winter and spring. Surface runoff water did not happen until early spring. Land was subjected to little loss of N and P in winter, mainly due to low content of soil water, depite of much of fertilizer and precipitation being added in fields. The first pronounced loss of N comes out in early spring, significantly corresponded for the added fertilizer in the middle March. The concentration of P was low and lightly variable in the runoff water. In the rice season, much of fertilizer and manure were added into fields in June, shortly after when the contents of total N and P in surface and runoff water attained to 33-18mg/kg and 1.2-0.4mg/kg respectively. Runoff was the
    prominent way of loss of N and P, and which were mainly composed with dissolved N and particle P. The dissolved N derived from fertilization and particle P should be the most crucial items to be controlled. The rice field was subjected to the loss of 38.8kg N /hm2and 0.95kg P/hm2 and about 33%-50% of the total loss comes out of during the rainy period after fertilization. More attention should be paid to the period in June when the rice fields received much of precipitation and fertilizer. The loss of N and P in rice season, which is dominantly up to the incidental precipitation in early summer, is approximately 20-30 times than that of N and P in rape season.In rice season, the two kinds of soil test phosphorus in initial stages are of evidently high level, when there is much of risk and potential of P loss from the soil, and then descend. There is a larger deviation of soil test phosphorus in soil fractions than that of in original soil. Soil test phosphorus in >250um particles shows a keener response for the former fertilization than in the other two fractions. After 40 days, contents of soil test phosphorus were stable. In initial stages, soil test phosphorus in fractions between the two treatments was significantly different, and then not of difference. Initial loss of P was mainly influenced by the fertilization, while later loss of P mainly affected by the soil.Content of 20-250um particle shows high stability in rice season while content of <20um particle is high in June under continuous submergence which aggravates the loss of P with the coeffect of the former fertilization. Content of >250um particle sharply
引文
1. Allan G G, Bruce S T. A Review of New Zealand Measuring Phosphorus in Runoff from Pasture. J Environ Qua. , 2000, 29 (1) : 88-96
    2. Austin N R, Berbard P J, Collins M D P. Phosphorus losses in irrigation runoff from fertilized pasture. J Environ. Qual. , 1996, 25: 63-68.
    3.B. Eghball, J. E. Gilley, L. A. Kramer, et al. 窄草篱对径流中氮、磷的影响.水土保持情报,2001(4):7-13
    4. Bergstrom L, Brink N. Effects of differentiated application of fertilizer N leaching losses and distribution of inorganic N in Soil. Plant and Soil, 1986, 93 (3) : 333-345.
    5. Bernard T N. Nitrate behavior in ground waters of the southeastern USA. J Environ Qual. , 1999, 28: 1518-1527
    6. Chang SC, Jackson ML. 1957. Fractionation of soil phosphorus. Soil Sci. , 84: 133-144
    7. Coss M J, Howse K R, Lane P W. Losses of nitrate-N in water draining from under autumn-sown crops established by direct drilling or mould board ploughing. Soil Science, 1993, 44 (1) : 35-48.
    8. Cox F R, Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality. J Environ Qual. , 2000, 29 (5) : 1582-1586
    9. Czyk TG, Casper P, Koschel R. 1997. Variations of phosphorus release from sediments in stratified lakes. Water Air Soil Pollut. , 99: (1/4) : 427-434
    10. Daniel T C, Sharpley D R, Edwards D R, et al. Minimizing surface water entrophication from agriculture by phosphorus management. J. Soil and Water Conservation, 1994, 49 (2) : 30-38
    11. David M B, Gentry L E, Kovacic D A, et al. Nitrogen balance in and export from agricultural watershed. J Environ Qual. , 1997, 26: 1038-1048
    12. Donigian. A. S, Huber. W. C, 1991. Modeling of non-point source water quality in urban and nonurban areas. EPA/600/3-91/039, Washington: USEA
    13. Ellen K, Michael S, et al. Xylanase, Invertase and Urease Activity in Particle-Size Fractions of Soils. Effect of Mineral-Organic-Microorganism Interaction on Freshwater Environments(Edited by Berthelin, et al.), 1999, 275-285
    14. Frink C R. Nutrient budget: rational analysis of entrophication in Connecticut Lake. Environ Sci. Technol. , 1967, 1: 425-428
    15. Gaines T P, Gaines S T. Soil texture effect on nitrate leaching in soil percolates. Communication Analysis, 1994, 25 (13-14) : 2561-2570.
    16. Gartley K L, Sims J T. Phosphorus Soil Testing: Environmental Uses and Implication, Comm. Soil Sci Plant Anal,1994,25(9&10):1565-1582.
    17. Haygarth P M, Jarvis S C. Soil derived phosphorus in surface runoff from grazed grassland lysimeters. Water Research, 1999,13:140-148
    18. Heckrath G, Brookes P C, Poulton P R et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment. J. Environ. Qual, 1995,24:904-910
    19. Holdren GC, David. E A, Factors affecting phosphorus release from intact lake sediments cores, Environ.Sci .Technol., 1980,14(1):79-87
    20. Huada D R, Rober J G Phosphorus accumulation in farm ponds and dames in Southwestern Australia. J Environ Qual, 2000,29 (6):187-1881
    21. Isermann K. Share of nitrogen and phosphorus emissions into the surface water of West Europe against the background of their eutrophication, Rt Res., 1990,26:253-269
    22. Kellogg .R, et al. The potential for leaching of agrichemicals used in crop production: A national perspective. J. Soil Water Conservation, 1994, 49(3):294-298.
    23. Line D E. Non-point sources pollution. Water Environ Res., 1998,70 (4):895-911.
    24. Lowrance R R. Nutrient cycling in an agricultural watershed: 1 P Phreatic monument. J Environ Qual,1984(13) :22-27
    25. Macia H, Bates N, Neafus JE. Phosphorus release from sediments from Lake Carl Blackwell, Oklahoma. Water Res., 198014 :1477-1481
    26. Mahapatraic, Wpatrick J. Inorganic phosphate transformation in waterlogged soil. Soil Sci., 1969, 107:285-288.
    27. McCuen R H. A Guide to Hydrologic Analysis Using SCS Methods. Prentice-Hall,Inc. Englewood. Cliffs, 1982.
    28. MCdowell R, Sharpley A N, Brooks P, et al. Relationship between soil test phosphorus and phosphorus release to solution. Soil Science, 2001,166(2):137-149.
    29. Miller W T, et al. Sediment oxygen consumption and benthic nutrients fluxes on the Louisiana contenental self: Amethodologcal comparison. Estuaries, 1994,17(4):809-815
    30. Novotny V. Chesters G. Handbook of Non point Pollution: Source and Management. Van Nostrand Reinhold Company,1990
    31. Parry R. Agricultural phosphorus and water quality: environmental protection agency perspective. J of Environ Qual., 1998,27:258-261.
    32. Pinkowski P H. Effect of feedlot runoff on a southern Illinois forested watershed. J Environ Qual .,1985(14) :47-54
    33.R Shepard,威斯康星州农场的氮磷管理,水土保持科技情报,2000(4):11-13
    34. Rochford DJ. Studies in Australian estuarine hydrologyI. Introductory and comparative features, Austr. J. Mar. Frresh water. Res. , 1951, 2: 1-116
    35. Rudra, R. P. et al. The Importance of Precise Rainfall Inputs in Non-point Source Pollution Modeling. Trans. Am. Soc. Agric. Eng. 1993, 36-44.
    36. Sharpley A N, Charpra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ. Qual. , 1994, 23: 437-451.
    37. Sharpley A N. The selective erosion of plant nutrients in runoff. Soil Science Society of America Journal, 1985, 49: 1527-1534
    38. Sharply A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters: issues and options. J. Environ. Qual, 1994, 23: 437-451
    39. Sims J T, Simard R R, Joem B C. Phosphorus loss in agricultural drainage: historical perspectives and current research. J Environ. Qual. , 1998, 27: 277-293.
    40. Sims J T, Simard RR, Joern BC. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ Qual. 1998, 27: 277-293
    41. Smith K A, Jackson D R, Pepper T J. Nutrient losses bysurface runoff following the application of organic manures to arableland: Nitrogen. Environmental Pollution, 2001, 112: 41-51.
    42. Troiano J. Influence of amount and method of irrigation water application on leaching of Atrazine. J. Environ. Qual. , 1993, 22: 290-298.
    43. US Environmental Protection Agency. Focus on non-point source pollution: The Information Broker of Water Regulations and Standards. Non-point Sources Control Branch, Washington DC, 1989, November
    44. Wang J Y, Wang S J, Chen Y. Study on leaching loss of nitrogen in ricefields by using large undisturbed monolith lysimenters. Pedosphere, 1994, 4 (1) : 87-92
    45. Webb J, Henderson D, Anthony S G. Optimizing livestock manure applications to reduce nitrate and ammonia pollution: scenario analysis using the MANNER model. Soil Use and Management, 2001, 17: 188-194.
    46. Yin C. A multi-pond system as a protective zone for the management of lakes in China, Hydrobiology, 1993, 251: 321-329
    47. Zhu JG, Hart Y, Liu G. Nitrogen in percolation water in paddy field with a rice/wheat rotation. Nutrient Cycling Agroe-cosys. 2000, 57 (1) : 75-82
    48.蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响.水土保持通 报,1998,(2):1-8
    49.曹丽萍,王晓燕,广新菊.非点源污染控制管理政策及其研究进展.地理与地理信息科学,2004(1):90-94
    50.曹丽萍,王晓燕.水污染控制与管理的经济手段.首都师范大学学报(自然科学版),2003(9):74-78
    51.曹利平,王晓燕,梁博.水质管理中经济手段的应用.水资源保护,2004 (3):33-36
    52.陈欣,姜曙千,张克中.红壤小流域坡地不同利用方式对土壤磷素流失的影响.生态学报,2000,20(3):374-378
    53.陈家宝.南宁市南湖沉积物磷释放的研究.广西大学学报(自然科学版),1998,23(3):269-273
    54.陈金林,潘根兴,张爱国,等.林带对太湖地区农业非点源污染的控制.南京林业大学学报(自然科学版),2002,26(6)17-20
    55.陈利顶,傅伯杰.农田生态系统管理与非点源污染控制.环境科学,2000,21(2):98-100
    56.陈西平.计算降雨及农田径流污染负荷的三峡库区模型.中国环境科学,1992,(1):48-52
    57.陈效民,潘根兴,王德建,等.太湖地区农田生态环境中土壤饱和导水率研究.水土保持通报,2000,20(5)11-12
    58.陈玉娟.珠江广州河段中磷的形态研究.中山大学学报(自然科学),1990,9(4):73-78
    59.陈子明,袁锋明,姚造华,等.北京潮土硝态氮在土体中的移动特点及其淋失动态.土壤学报,1995.32(4):388-398
    60.单保庆,降雨径流过程中土壤表层P迁移过程的模拟研究.环境科学学报,2001,21(1):7-12
    61.单保庆,尹澄清,白颖,等.小流域磷污染物非点源输出的人工降雨模拟的研究.环境科学学报,2000,20(1):33-37
    62.单保庆,尹澄清,于静,等.降雨-径流过程中土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(1):7-12
    63.单保庆.小流域磷污染物非点源输出的人工降雨模拟研究.环境科学学报,2000,20(1):33-37
    64.段水旺,章申,陈喜保,等.长江下游氮、磷含量变化及其输送量的估计.环境科学,2000,21(1):53-56
    65.付伟章,史衍玺.美国有关可溶性磷的流失评价模型,水土保持科技情报,2003,3:23-25
    66.傅庆红.湖泊沉积物中磷的形态分析及其释放研究.四川环境,1994,13(4):21-24
    67.高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价.环境科学学报,2001,38(1):344-348
    68.高超,张桃林.不同利用方式下农田土壤对磷的吸持与解吸特征.环境科学,2001,22(4)67-72
    69.郭红岩,王晓蓉,朱建国,等.太湖流域非点源氮污染对水质影响的定量化研究.农业环境科学学报2003,22(2):150-153
    70.郭红岩,王晓蓉,朱建国.太湖一级保护区非点源磷污染的定量化研究.应用生态学报, 2004,15(1):136-140
    71.郭红岩.地理信息系统支持下非点源污染的定量与指标化研究及其生态毒理效应.南京大学博士学位论文,2002
    72.郭胜利,余存祖.有机肥对土壤剖面硝态氮淋失影响的模拟研究.水土保持研究,2000,7(4):123-126.
    73.何清溪.大亚湾沉积物中磷的化学形态分布特征.海洋环境科学,1990,9(4):6-10
    74.何增耀.农业环境科学概论.上海:上海科学技术出版社,1991
    75.贺缠生,傅泊杰,陈利顶.非点源污染的管理及控制.环境科学,1998.19(5):87-91
    76.华兆哲.太湖沉积物磷释放对羊角月牙藻的生物可利用性研究.环境科学学报,2000,20(1):100-105
    77.黄丽,张光远,丁树文.侵蚀紫色土壤颗粒流失研究.水土保持学报,1999.5(1):35-39
    78.黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮素的流失过程.土壤与环境,2001.10(1):6-10
    79.黄满湘,章申,张国梁.北京地区农田氮素养分随地表径流流失机理.地理学报,2003(1):147-154
    80.黄元仿.不同灌水条件下土壤氮素淋溶渗漏的研究[A].现代土壤科学研究,北京,中国农业科技出版社,1994:243-247
    81.江苏省土壤普查办公室.江苏土壤.北京:中国农业出版社,1995:232-357.
    82.姜翠玲,崔广柏.湿地对农业非点源污染的去除效应.农业环境保,2002,21(5):471-473,476
    83.姜培坤,周国模,钱新标.侵蚀型红壤植被恢复后上壤养分含量与物理性质的变化.水土保持学报,2004(2):12-14
    84.金相灿,叶春,颜昌宙,等.太湖重点污染控制区综合治理方案研究.环境科学研究,1999,12(5):1-5
    85.金相灿.湖泊富营养化控制和管理技术.北京:化学工业出版社,2001,5-35
    86.李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,1996,(2):14-18
    87.李怀恩.水文模型在非点源污染研究中的应用.陕西水利,1987,(3):18-23.
    88.李庆逵.现代磷肥研究的进展.土壤学进展,1986,(2):1-7
    89.李庆召,王定勇,朱波.自然降雨条件下紫色土区磷素的非点源输出规律.农业环境科学学报2004,23(6):1050-1052
    90.李世清,卜彤英,李生秀.半干旱地区粘土矿物对铵离子的硝化及固定.干旱地区农业研究,1993(11):99—107
    91.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240-242.
    92.李韵珠等.土壤水和养分的有效利用.北京农业大学出版社,1994,8
    93.李志博,王起超,陈静.农业生态系统中氮素循环研究进展.土壤与环境,2002,11(4):417-421
    94.连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征.应用生态学报,2003,11:1879-1883
    95.廖文根.太湖水体的磷负荷分析.水利学报,1994,11:77-81
    96.刘方,何腾兵,钱晓刚,等.不同利用方式下黄壤旱坡地磷素状况及环境影响分析.土壤与环境,2002,11(3):232-236
    97.刘春增.长期施肥对砂土肥土变化及硝态氮积累和分布的影响.土壤通报,1996,27(15):216-218
    98.刘文祥.人工湿地在农业面源污染控制中的应用研究.环境科学研究,1997,10(4):15-19
    99.刘翔,刘兆昌.氮对地下水的污染预测模型.环境科学,1991.12(6):8-11
    100.刘远金,卢瑛,陈俊林,等.广州城郊菜地土壤磷素特征及流失风险分析.土壤与环境,2002,11(3):237-240
    101.六省农业中专教材编审委员会.植物栽培,气象出版社,1999
    102.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.147-211
    103.鲁如坤.土壤植物营养学原理与施肥.北京:化学工业出版社,1998.428-436
    104.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998.4(1):8-15
    105.吕耀,程序.太湖地区农田氮素非点源污染及环境经济分析.上海环境科学,2000(19):143-148
    106.吕耀.苏南太湖流域农业非点源污染及农业持续发展战略.环境科学动态,1998(2):1-4
    107.马立珊,汪祖强,张水铭.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47
    108.马立珊.太湖流域水环境硝态氮和亚硝态氮污染的研究.环境科学.1987,8(2):60-65.
    109.潘根兴,褚清河,张英,等.太湖地区高产水稻土经济极点施肥:一种农田N,P养分负荷的田间控制技术,环境科学,2003,5:96-100
    110.潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响,环境科学.2003.3.91-95
    111.潘岳.实施绿色GDP难在哪.中国经济周刊,2004(23):9
    112.彭琳,王继增,卢宗藩.黄土高原旱作土壤养分剖面运行与坡面流失的研究.西北农业学报,1994.3(1):62-66
    113.彭琳.土类土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用.土壤学报,1981,18(3):212-222
    114.钱秀红.杭嘉湖平原农业非点源污染的调查评价及控制对策研究.浙江大学硕士论文,2001
    115.邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究.农业环境科学学报 2004,23(4):740-744
    116.阮仁良.苏州河截流区外非点源污染调查.上海环境科学,1997,16(1):20-22
    117.邵宗臣,赵美芝.土壤中积累态磷活化动力学研究:Ⅰ有机质的影响.土壤学报,2002.39(3):318-325
    118.司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化.土壤,2000(4):188-193.
    119.孙耀.丁字湾沉积物间隙水中N,P营养盐的分布及其在沉积物-水界面的扩散通量.海洋水产研究,1993,14:105-111
    120.孙玉龙,郝振纯,陈启慧,等.用TDR确定沙壤土非饱和淹灌条件下NH4+的硝化反应及NO3-的入渗迁移.环境科学学报,1997,17(4):417-122
    121.唐孟成,俞秋红,王寿祥.雨后入湖溪流磷污染对西湖的影响及其对策.环境污染与防治,2003(2):12-15
    122.唐孟成.西湖沉积物磷释放影响因子的研究.浙江农业大学学报,1997,23(3):289-292
    123.王强,杨京平,沈建国,等,稻田田面水中三氮浓度的动态变化特征研究.水土保持学报,2003.17(3):51-54
    124.王少平,俞立中,许世远,等.上海青紫泥土壤氮素淋溶及其对水环境影响研究.长江流域资源与环境,2002(11):554-448
    125.王庭健.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究,1994,7(4):2-19
    126.王晓蓉.环境条件变化对太湖沉积物磷释放的影响.环境化学,1996,16(1):15-19
    127.王晓燕.密云水库水质特征及吸附、释放磷的试验研究.首都师范大学学报(自然科学版),1997,18(3):85-90
    128.邬伦.降雨产流过程与氮、磷流失特征研究.环境科学学报,1996,160)111-115
    129.吴根福.杭州西湖底泥释磷的初步研究.中国环境科学,1998,18(2):107-110
    130.吴敬民,许学前,姚月明.基肥不同施用方法对水稻生长及稻田周围水体污染的影响.土壤通报,1999,30(5):232-234
    131.夏青等.计算非点源污染负荷的流域模型.中国环境科学,1985,(4):23-30
    132.谢学俭,冉炜,沈其荣,等.淹水条件下水稻田中磷的淋溶研究.土壤,2003,35(6):506-509
    133.许峰,蔡强国,吴淑安.坡地农林复合系统养分过程研究进展.水土保持学报,2000.14(1):83-87
    134.晏维金,尹澄清,孙蹼,等.磷氮在水田湿地中的迁移转化及径流流失过程.应用生态学报,1999,10(3):312-316
    135.晏维金.模拟降雨条件下沉积物对磷的富集机理.环境科学学报,2000,20(3):332-337
    136.杨金玲,张甘霖,张华,等.亚热带丘陵区流域不同土地利用系统磷素径流输出特征.环境科 学,2002(9):36-41
    137.杨金玲,张甘霖,周瑞荣.皖南丘陵地区小流域氮素径流输出的动态变化.农村生态环境,2001,17(3):1-4
    138.杨维荣.1980.环境化学[M].北京:人民出版社.
    139.姚扬,金相灿,姜霞等.光照对湖泊沉积物磷释放及磷形态变化的影响研究.环境科学研究,2004:17:30-33
    140.叶荣启,周仁禄,冯精华,等.闽北栓皮栋人工林土壤肥力与水源涵养功能的研究.福建农林大学学报,1995,15(4):353-356
    141.尹澄清,毛战坡.用生态工程技术控制农村非点源污染.应用生态学报,2002,13(2):229-232
    142.于世繁.白洋淀底质磷的释放及与水体中磷的关系.环境科学,1995,16(增刊):30-31,34
    143.于天仁,陈志诚.土壤发生中的化学过程.北京:科学出版社,1990
    144.袁冬海,王兆塞,陈欣,等.不同农作方式红壤坡耕地土壤氮素流失特征.应用生态学报,2002.13(7):863-866
    145.袁新民,王周琼.硝态氮的淋洗极其影响因素.干旱区研究,2000.17(4):46-52
    146.张大弟,陈佩音,支月娥.上海市郊4种地表径流及稻田水中的污染物浓度.上海环境科学,1997,16(9):4-6
    147.张恩平,张淑红,李太来,等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响.黑龙江农业科学,2001,2:5-7
    148.张水龙,庄季屏.农业非点源污染研究现状与发展趋势.生态学杂志,1998.17(6):51-55
    149.张水铭.农田排水中磷对苏南太湖水系的污染.环境科学,1993,14(6):24—29
    150.张巍,王学军.应用概率约束模型分析不确定条件下非点源治理的最优策略.农业环境保护2002,21(4):314-317
    151.张巍.在总量控制体系下实施点源与非点源排污交易的理论研究.环境科学学报,2001,21(6):749-750
    152.张维理,林葆,李家康.西欧发达国家提高化肥利用率的途径.土壤肥料,1998(5):3-9
    153.张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律.地理学报,2000.5(5):617-626
    154.张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型.地理科学进展,2000.19(2):128-134
    155.张兴昌,邵明安.水蚀条件下不同土壤氮素和有机质流失规律.应用生态学报,2000(4):231-234
    156.张志剑,董亮,朱荫媚,水稻田面水氮素的动态特征、模式表征及排水流失研究.环境科学学 报,2001(7):475-480
    157.张志剑,王光火.嘉兴地区水稻土磷素状况与环境效应评估.科技通报,1999,5:377-381.21(4):475-480
    158.张志剑,王珂,朱荫湄,等.浙北水稻主产区田间土-水磷素流失潜能.环境科学,2001,22(1):98-101
    159.张志剑,王珂,朱荫媚,等.水稻田土-水系统中磷素行为及其环境影响研究.应用生态学报,2001,12(2):229-232
    160.郑本暖.不同治理措施对退化紫色上上壤生物学活性的影响.水体保持学报,2003(10):117-119
    161.郑粉莉,李靖,刘国彬.国外农业非点源污染(面源污染)研究动态.水土保持研究,2004,12:64-65
    162.周祖澄.固体氮肥施入旱田土壤中去向的研究.环境科学,1985,6(6):2-7.
    163.朱莉·斯托弗.水危机共寻找解决水污染的方案.北京:科学出版社,2000.
    164.朱晓东.面向市场经济的中国排污收费制度改革初探.中国环境科学,1999,18(6):561-564
    165.朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社1990.94-185
    166.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700