用户名: 密码: 验证码:
板材液压成形数值模拟及成形性能预报模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材液压成形分为液体代替凸模和液体代替凹模两种。本文研究的是液体代替凸模的液压成形工艺。这种工艺技术所用模具简单,适用于形状复杂、批量不大的大型板料零件的生产。然而由于成形机理的复杂性,过去对这种工艺的研究常常采用反复试验的方法,这样不仅效率低,而且增加了加工成本。近年来,随着有限元技术的发展,数值模拟技术开始被应用于液压成形技术的研究中。
     本文重点阐述了实现板料液压成形工艺计算机仿真的方法,通过数值模拟研究了材料参数和工艺参数对板料液压成形的影响和作用,并且通过实验验证,模拟与实验结果相吻合,证明数值模拟液压成形方法的正确性和可行性。紧接着以半球形件和复杂盒形件(摩托车油箱壳体)为例,对其液压成形过程进行了数值模拟。对于半球形零件,得到了在液压成形过程中板料的流动规律以及应力应变分布。对于摩托车油箱,模拟了影响液压成形的关键参数成形油压和压边力范围,对液压成形条件下应力应变的分布进行了分析,对可能发生起皱和破裂的部位进行了预测,对拐角处起皱的原因进行了分析,并且在添加拉深筋情况下,对液压成形摩托车油箱进行了模拟计算,数值模拟结果表明,合理地添加拉深筋可以改变和分配凸缘变形区金属的流动阻力,消除拐角处的起皱现象。
     最后将神经网络技术引入板料液压成形领域,提出基于人工神经网络的零件成形性能预报模型,建立了具有三层的BP神经网络对零件成形结果的预测,为板料成形中确定零件的最终成形结果提出了一个新思路,克服了数值模拟过程中花费较长时间来计算模拟的缺陷。研究结果表明,对于多参数耦合问题,人工神经网络确实有很大的优势,完全适合应用于板料液压成形领域。
     本文实现了液压成形工艺的有限元数值模拟,研究了材料参数和工艺参数对板料成形性能的影响,为解决实际问题提供一种途径和理论参考;利用神经网络建立了零件成形性能的预报模型,为将来探索板料液压成形的合理工艺条件提供了一种简单、有力的工具,这也为开发专用液压成形工艺软件和有限元模拟系统奠定了基础。
Hydroforming has two fashions, one is that liquid replaces punch, two is that liquid replaces die. In this paper, research the former. Because of simple mould and suit to complex shape, a little of batch part, the technics has many virtues. But due to the complication of its forming mechanism, it is necessary to trial and tests frequently in the past, obtained technology parameters of a concrete part. In recent years, with the development of FEM technology, the numerical simulation method is also been a analysis tool for hydroforming process.In this paper, how to realize the computer simulation of the hydroforming process is mostly introduced and the effects of technology important parameters are illuminated by simulating. An experiment for hydroforming is made out. the coincidence of results from experimental and simulation calculation verifies the reliability of the simulation. Furthermore, two typical examples that they are half ball part and complex cavity((motorcycle oil) are taken. About the former, the distribution of the thickness is analyzed. The deformation law of the sheet parts during hydroforming had been researched. About the latter, through numerical simulation, the key parameters effecting hydroforming, liquid pressure and blank holdeing force, are calculated. stress and strain distribution during hydroforming is analyzed and places where wrinkling and rupture may occur are predicted. Furthermore, the reasons for wrinkling at corners are investigated. Numerical simulation is also applied for hydorfoming of complicated-box shaped parts with draw beads. The results indicated that appropriate draw beads reasonably distributing the flow resistance on area of flange, which contributes to eliminate the wrinkling possibility at corners.Finally, in this paper a forecast model about blank forming result which based on artificial neural network is provided. The forecast model has three three-layer BP network structure and forecast blank forming result. It is a new thought for determining blank forming result. The model reduces the amounts of computer
引文
[1] ZHANG Shihong. Developments in hydroforming[J]. J of Materials Processing Technology, 1999, 91: 236-244.
    [2] ZHANG Shihong, DANCKERT J. Development of hydromechanical deep drawing[J]. J of Materials Processing Technology, 1998, 83: 14-25.
    [3] Klaus Siegert, Markus Haussermann, Bruno Losch, etal. Recent Developments in Hydroforming Technology. Journal of Processing Technology, 2000, 98: 251-258.
    [4] F. Klaas, U. Luck, K. Kaehle. Development of the Internal High-PressureForming Process (IHV) . SAE Technical Paper Series 930027. Int. Cong. And Expos, Detroit. Michigan, 1993: 12
    [5] W. Pegzold, S. Lohner, S. Bohme, etal. Forming Behavior of Laser Beam Welded Sheet. Laser Assisted Net Shape Engineering Proceedings of LANE 1994, Erlangen, Germany, Meisenbach, Bamberg, 1994: 219-224
    [6] D. Schmoeckel, P. Dick. High Pressure Forming of Sheet Metal Plates in Producing Hollow-Formed Parts. Prod. Eng, 1997, 4(1): 5-8
    [7] Z. R. Wang, Z. Yushan, Z. Yuansong etal. Experimental Research and Finite-Element Simulation of Plates Hydrobulging in Pairs. Int. J. Press. Vessel. Pip. 1996, 68(3): 243-248
    [8] S. H. zhang. Developments in Hydroforming. Journal of Materials Processing Technology. 1999, 91: 236-244
    [9] 孙友松,刘天湖,肖小亭·面向新世纪的塑性加工技术—第六届塑性技术国际会议综述·锻压技术,2000,(2):59-60
    [10] K. B. Nielsen, N. Brannberg, L. Nielsson. Sheet Metal Forming Simulation Using Explicit Finite Element Methods. Proceedings of the Second European Conference on Structural Dynamics: EURODYN'93, Trondheim, Norway, 1993: 625-633
    [11] S. H. Zhang, K. B. Nielsen, J. Danekert, etal. Numerical Simulation of the Integral Hydro-Bulge Forming of Non-Clearance Double-Layer Spherical Analysis of Stress State. Mater. Process. Technol. 1998, 75: 212-221
    [12] F. Horton. Using Forming Simulation in Development of Complex Hydroformed Shapes. TPA's Second Annual Automotive Conference, Dearborn, Michigan, 1997: 173-189
    [13] 柳泽,黄迪民.板材成形数值模拟技术的进展及现状.冲压,2000,(3):10-12
    [14] 张士宏,尚彦凌,郎利辉.用动态显式有限元法对板材成形进行计算模拟.塑性工程学报,2000,(1):19-24
    [15] K. B. Nielsen, N. Brannher, L. Tilson. Sheet Metal Forming Simulation Using Explicit Finite Element methods. Proceedings of the Second European Conference on Structural Dynamics: EURODYN'93, Trondheim, Norway, 21-23 June, 1993: 625-634
    [16] D. Y. YANG, J. B. KIM and D. W. LEE. Investigation into Manufacturing of very Long Cups by Hydromechecal Deep-drawing and Ironing with Controlled Radial Pressure. Annals of the CIRP, 1995, 44(1): 255-258.
    [17] J. C. Gelin, J. Ldaniel. Computer Modeling of Sheet Metal Forming by the FiniteMethod. Annals of the CIRP, 1989, 38(1): 271-281
    [18] J. C. Gelin, P. Delassus and L. Boulmane. Modeling and Simulation of the Deep Drawing Operations with a Hydraulic Counter-Pressure. Proceeding of the 4th Intemtional Conference on Technology of Plasticity. Beijing, 1993: 1011-1016
    [19] J. C. Gelin, P. Delassus. Modeling and Simulation Aqua-draw Deep Drawing Process. Annals of the CIRP, 1993, 42(1): 271-277
    [20] J. C. Gelin, P. Delassus. Modeling and Optimal Control of Process Parameters in the Aquadraw Deep Drawing Process, Advanced Technology of Plasticity 1996, Proceeding of the 5th International Conference on Technology of Plasticity Columbus, Ohio, USA, October7-10, 1996: 827-831
    [21] Sy-wei Lo, Tze-Chi Hsu. An Analysis of the Hemispherical-punch Hydrforming Process. J. Mater. Process. Technol, 1993, 37: 225-240
    [22] M. R. Jensen. Investigation of Tool Wear and Hydromechanicl Deep Drawing. Aalborg University Ph. D Dissertation, 1999:
    [23] S. H. ZHANG, M. R. JENSEN. Analysis of the Hydromechanical Deep Drawing of Cylindrical Cups. J. Mater. Process. Technol. 2000, 103: 367-373.
    [24] S. H. ZHANG, K. B. NILSEN, J. DANCKERT, et al. Finite Element Analysis of the Hydromecanical Deep-drawing Process of Tapered Rectangle Boxes. J. Mater. Process. Technol, 2000, 102: 1-8
    [25] S. H. Zang, L. H. Lang, D. C. Kang. Hydromechenical Deep-drawing of Aluminium Parabolic Workpies-experiments and Numerical Simulation. International Journal of Machine Tools & Manufacture, 2000, 40: 1497-1492
    [26] 朱成康.对向液压成形的应用.锻压机械,1982,2:39-45
    [27] 焦李成.神经网络系统理论.西安电子科技大学出版社,1996:
    [28] 何述东等.多层前向神经网络结构的研究进展.控制理论与应用,1998,15(3):313-318
    [29] Kozo Osakada and Guobin Yang, Application of neural network to an expert system for cold forming, Int. J. Mach. Tools Manufact. Vol. 31, No. 4, 1991: 577-587
    [30] Jun Takeuchi and Yukio Kosugi, Neural network representation of finite element method, Neural Networks, Vol. 7, No. 2: 389-395
    [31] Noack. P, (1973), Computer-aided determination of operation sequence and cost in cold forging of rotation-symmetrical workpieces, ASME Technical Paper, p73-141
    [32] Osakada. K, et al, Application of AI techniques to process planning of cold forging, Annals of CIRP, Vol. 37(1), 1988: 239
    [33] J. P. Tang and S. I. Oh. AFD, An automated forging design system, 16th NAMRC. 1998: 55-62
    [34] Hartley. P, et al, Forging die design and flow simulation, The integration in intelligent knowledge-based system, J. Mech. Working Tech., Vol15, 1987: 1
    [35] Rowe. G. W, An intelligent knowledge-based system to provide design and manufacturingdata for forging, Computer-aided Engineering Journal. 1987(2): 56.
    [36] Aizawa. T, et al, Engineering database for the materials design and the evaluation of workability in the forging process, Advanced technology of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700