用户名: 密码: 验证码:
Ⅳ级逸度模型对典型有机污染物环境行为的动态模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机污染物的多介质环境行为,以及其对生态环境和人类健康的潜在风险性越来越受到各相关领域学者的关注。数学模拟也成为了探讨有机污染物环境行为的重要手段。Mackay等建立的逸度模型以其结构简单、整体性好等特点成为了模拟有机污染物环境行为的优秀模型之一。其中,Ⅳ级逸度模型由于其模拟的环境系统逼近真实环境,能够研究有机污染物的动态环境行为,得到了广泛的应用。Ⅳ级逸度模型的应用不仅可以大大提高研究效率,提供污染物在多介质环境中随时间变化的污染水平、迁移的定量结果,且对环境污染预测、生态风险评价和污染控制措施优选等具有重要意义。
     本研究以六六六(HCHs)为对象污染物,应用Ⅳ级逸度模型研究了其在黄河下游流域的动态归趋。另外,根据Ⅳ级逸度模型的温度依附性,考察了松花江污染事故后,温度对硝基苯环境行为的影响。Ⅳ级逸度模型的应用不仅对认识对象污染物的环境行为有重要意义,也为今后研究其它有机污染物提供方法学基础。
     通过建立Ⅳ级逸度模型,模拟了HCHs在1952~2010年间黄河下游流域的环境归趋。模型预测的HCHs浓度值与实测值吻和较好,大部分残差低于0.5个对数单位。模拟结果很好的反映了HCHs的浓度随大量的农业施用和其后禁用导致的变化情况。β-HCH由于极难降解逐渐成为了环境中HCHs的主要异构体。HCHs在相邻介质间主要的迁移过程包括空气-土壤的湿沉降,空气-水的气扩散和土壤-水的径流。灵敏度分析结果表明,HCHs在土壤中的降解速率常数,与主要来源相关的参数等对模型结果影响相对较大。不确定性分析结果表明预测的HCHs在环境各相中的浓度的变异系数范围是0.5~5.8。
     通过建立具有温度依附性的Ⅳ级逸度模型,重点考察了温度T对其环境行为的影响。结果表明,模型的主要参数逸度容量和迁移系数与T呈负相关,T对硝基苯在大气中的污染水平影响较大。随着T的降低,污染物从大气向其他环境相富集。0℃条件下,事故发生后水体和大气中硝基苯浓度峰值可分别达到背景值的4.9倍和4.7倍。模型预测的硝基苯浓度值与实测值吻和较好。
The multimedia environmental behavior of organic pollutants and their exposure risk to the ecosystems and human health has become more and more concerned by the researchers. Mathematical simulation is an important method used in studying environmental behavior of the pollutants. The fugacity model established by Mackay et al proved to be one of the most excellent environmental models because it can give accurate, comprehensive and reliable simulating results despite of its simple structure. As one of fugacity model, LevelⅣfugacity model can dynamically simulate the environmental behavior of organic pollutants, and was widely used by many researchers. It's an effective tool to study their concentration levels, and transfer processes between adjacent compartments quantitatively, and the results of simulation are significant to environmental pollution prediction, ecological risk assessment and optimization of environmental pollution control measures.
     LevelⅣfugacity model were applied to simulate the dynamic transfer and fate of HCHs. Dynamic model depending on temperature with fugacity approach not only described the fate of Persistent Organic Pollutants (POPs) in the environment, but also evaluated the influences of temperature on environmental fate of pollutants. A levelⅣfugacity model was also developed to simulate temperature effects on multimedia fate pollutants emitted from environmental accidents, using nitrobenzene released from the Songhua River pollution accident in late 2005 as a case. It is significant to learn about their environmental impacts, and provide environmental parameters and model framework for studying the fate of other organic pollutants.
     A levelⅣfugacity model was established to simulate the fate and transfer of HCH isomers in the lower reach of the Yellow River basin, China, during 1952~2010. The predicted concentrations of HCHs are in good agreement with the observed ones, as indicated by the residual errors being generally lower than 0.5 logarithmic units. The effects of extensive agricultural application and subsequent prohibition of HCHs are reflected by the temporal variation of HCHs predicted by the model. The proportions of HCH isomers in the environment also changed with time due to their different physicochemical properties. Althoughβ-HCH is not the main component of the technical HCHs, it has become the most abundant isomer in the environment because of its persistence. The dominant transfer processes between the adjacent compartments were deposition from air to soil, air diffusion through the air-water interface and runoff from soil to water. Sensitivity analysis showed that degradation rate in soil and parameters related to major sources had the strongest influence on the model result. Results of Monte Carlo simulation indicated the overall uncertainty of model predictions, and the coefficients of variation of the estimated concentrations of HCHs in all the compartments ranged from 0.5 to 5.8.
     A levelⅣfugacity model was developed to simulate temperature effects after the accident. The results of simulation show that with the decrease of temperature, the fugacity capacities and nitrobenzene transfer coefficients among different compartments increase. As temperature decreases, pollutants in air compartment tend to partition into the other condensed compartments. At 0℃, peak concentration of nitrobenzene in water and air can reach 4.9 and 4.7 times as high as their background concentrations, respectively. LevelⅣfugacity model was proved to be an efficient method to evaluate the influences of temperature on environmental fate of pollutants released from accidents.
引文
[1]Mackay D.Finding fugacity feasible.Environmental Science and Technology,1979,13(10):1218-1223.
    [2]Mackay D,Joy M,Paterson S.A quantitative water,air,sediment interaction(QWASI) fugacity model for describing the fate of chemicals in lakes.Chemosphere,12(7-8):981-997.
    [3]Mackay D.Multimedia Environmental Models:the Fugacity Approach.Boca Raton:Lewis Publisher,2001.
    [4]董玉瑛,雷炳莉.多介质逸度模型的应用与展望.化工环保,2005,25(3):199-203.
    [5]张丽,戴树桂.多介质环境逸度模型研究进展.环境科学与技术,2005,1:96-99.
    [6]Mackay D,Huges A.Three-parameter equation describing the uptake of organic compounds by fish.Environmental Science and Technology,1984,18(6):439-444.
    [7]Schramm K,Reichl A,Hutzinger O.UNITTree:a multimedia compartment model to estimate the fate of lipophilic compounds in plants.Chemosphere,1987,16(10-12):2653-2663.
    [8]Diamond M,Mackay D,Comer R,et al.A model of the exchange of inorganic chemicals between water and sediments.Environmental Science and Technology,1990,24(5):713-722.
    [9]Mackay D,Paterson S.Evaluating the multimedia fate of organic chemicals:a Level Ⅲ fugacity model.Environmental Science and Technology,1991,25(3):427-436.
    [10]Harner T,Mackay D,Jones K.Model of the long-term exchange of PCBs between soil and the atmosphere m the Southern UK.Environmental Science and Technology,1995,29(5):1200-1209.
    [11]Jantunen L M,Bidleman T.Air-Water gas exchange of hexaehlorocyclohexanes(HCHs) and the enantiomers of α-HCH in arctic regions.Joumal of Geophysical Research-Atmospheres,1997,102(D15):19279-19282.
    [12]Bru R,Carrasco J M,Paraiba L C.Unsteady state fugacity model by a dynamic control system.Applied Mathematical Modelling,1998,22(7):485-494.
    [13]Paraiba L C,Carrasco J M,Bru R.Level Ⅳ fugacity model by a continuous time control system.Chemosphere,1999,38(8):1763-1775.
    [14]Paraiba L C,Bru R,Carrasco J M.Level Ⅳ fugacity model depending on temperature by a periodic control system.Ecological Modelling,2002,147(3):221-232.
    [15]Cousins I,Mackay D,Jones K.Measuring and modeling the vertical distribution of semi-volatile organic compounds in soils.Ⅱ:Model development.Chemosphere,1999,39(14):2519-2534.
    [16]Mackay D,Hickie B.Mass balance model of source apportionment,transport and fate of PAHs in Lac Saint Louis,Quebec.Chemosphere,2000,41(5):681-692.
    [17]Wania F,Mclachlan M S.Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model.Environmental Science and Technology,2001,35(3):582-590.
    [18]Warren C S,Mackay D,Bahadur N P,et al.A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems:application to the Rihand Reservoir,India.Water Research,2002,36(17):4341-4355.
    [19]Helm P A,Diamondm M L,Semkin R,et al.A mass balance model describing multiyear fate of organochlorine compounds in a High Arctic Lake.Environmental Science and Technology,2002,36(5):996-1003.
    [20]Breivik K L,Wania F.Evaluating a model of the historical behavior of two hexachorocyclohexanes in the Baltic sea environment.Environmental Science and Technology,2002,36(6):1014-1023.
    [21]叶常明,雷志芳,王宏等.有机污染物在多介质环境的稳态非平衡模型.环境科学学报,1995,15(21):192-198.
    [22]叶常明,雷志芳,王宏等.单甲脒等有机污染物多介质坏境的稳态平衡模型构建.生态学报,1995,15(2):192-200.
    [23]Cao H Y,Tao S,Xu F L,et al.Multimedia fate model for hexachlorocyclohexane in Tianjin,China.Environmental Science and Technology,2004,38(7):2126-2132.
    [24]Cao H Y,Liang T,Tao S.Simulating the transfer and fate of hexachlorocycloheane in recent 50years in Beijing,China.Science in China Ser.D Earth Science,2005,48(12):2203-2213.
    [25]Li Q L,Zhu T,Qiu,X H,et al.Evaluating the fate of p,p'-DDT in Tianjin,China using a non-steady-state multimedia fugacity model.Ecotoxicology and Environmental Safety,2006,63(2):196-203.
    [26]Tao S,Yang Y,Cao H Y,et al.Modeling the dynamic changes in concentrations of γ-hexachlorocyclohexane(γ-HCH) in Tianjin region from 1953 to 2020.Environmental Pollution,2006,139(1):183-193.
    [27]Cao H Y,Liang T,Tao S,et al.Simulating the temporal changes of OCP pollution in Hangzhou,China.Chemosphere,2007,67(7):1335-1345.
    [28]Liu Z Y,Quan X,Yang F L.Long-term fate of three hexachlorocyclohexanes in the lower reach of Liao River basin:Dynamic mass budgets and pathways.Chemosphere,2007,69(7):1159-1165.
    [29]高宏,董继元,吴军年.兰州地区HCHs的跨界面迁移与归趋.中国环境科学,2008,28(5):407-411.
    [30]Luo Y Z,Gao Q,Yang X S.Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale—Ⅰ:Theoretical considerations and model implementation.Journal of Environmental Management,2007,83(1):44-55.
    [31]Luo Y Z,Gao Q,Yang X S.Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale—Ⅱ:Trichloroethylene test case.Journal of Environmental Management,2007,83(1):56-65.
    [32]WHO.Lindane(Environmental Health Criteria 124),Geneva,International Programme on Chemical Safety,1991.
    [33]Scheringer,M,Wania,F.Chapter 9 Multimedia models of global transport and fate of persistent organic pollutants,In:Handbook of Environmental Chemistry Vol.3.Fiedler H Ed,Springer,Berlin Heidelberg,2003.
    [34]Bennett D,Furtaw D.Fugacity-Based Indoor Residential Pesticide Fate Model.Environmental Science and Technology,2004,38(18):2142-2152.
    [35]Iman R L,Helton J C,Campbell J E.An approach to sensitivity analysis or computer models:Part Ⅰ-ranking of input variables,response surface validation,distribution effect and technique synopsis.Journal of Quality Technology,1981,13(4):232-240.
    [36]Helton J C,Iman R L.Sensitivity analysis of a model for the environmental movement of radio nuclides.Health Physics,1982,42(5):562-584.
    [37]Mongan M C,Henrion M.Uncertainty—a guide to dealing with uncertainty in quantitative risk and policy analysis.Cambridge,United Kingdom:Cambridge University,1990.
    [38]Iwata H,Tanabe S,Sakai N,et al.Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate.Environmental Science and Technology,1993,27(6):1080-1098.
    [39]Walker K,Vallero D A,Lewis R G.Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment.Environmental Science and Technology,1999,33(24):4373-4378.
    [40]Li Y F,Cai D J,Singh A.Technical hexachlorocyclohexane use trends in China and their impact on the environment.Archives of Environmental Contamination and Toxicology,1998,35(4):688-697.
    [41]华小梅,单正军.我国农药的生产,使用状况及其污染环境因子分析.环境科学进展,1996,4(2):33-45.
    [42]Li Y F.Global technical hexachlorocyclohexane usage and its contamination consequences in the environment:from 1948 to 1997.The Science of the Total Environment,1999,232(3):121-158.
    [43]Agency for Toxic Substances and Disease Registry(ATSDR).Toxicological profile for Alpha-,Beta-,Gamma-and Delta-Hexachlorocyclohexane.U.S.Department of Health and Human Services,Atlanta,GA,1997.
    [44]Willett K L,Ulrich E M,Hites R A.1998.Differential toxicity and environmental fates of hexachlorocyclohexane isomers.Environmental Science and Technology,32(15):2197-2207.
    [45]Geyer H J,Scheunert I,Korte F.Correlation between the bioconcentration potential of organic environmental chemicals in humans and their n-octanol/water partition coefficients.Chemosphere,1987,16(1):239-252.
    [46]Jung D,Becher H,Edler L,et al.Elimination of beta-hexachlorocyclohexane in occupationally exposed persons.Journal of Toxicology and Environmental Health,1997,51(1):23-34.
    [47]Feldmann R J,Maibach H I.Percutaneous penetration of some pesticides and herbicides in man.Toxicology and Applied Pharmacology,1974,28(1):126-132.
    [48]Mackay D,Shiu W Y,Ma K C.Illustrated handbook of Physical-Chemical properties and environmental fate for organic chemicals pesticide chemicals,vol.5.Boca Raton:Lewis Publisher,1997.
    [49]贺伟程.黄河水资源情势分析.水利规划设计,2000,3:16-20.
    [50]Wang H J,Yang Z S,Saito Y,et al.Stepwise decreases of the Huanghe(Yellow River) sediment load(1950-2005):Impacts of climate change and human activities.Global and Planetary Change,2007,57(3-4):331-354.
    [51]刘桂仪,董上茂.黄河下游山东段河道带稳定性的地质环境评价.山东地质.1999,14(3):38-40.
    [52]朱桂香.黄河下游地区生态农业建设探讨.生态经济,1990,4:16-20.
    [53]Wu Y,Zhang J,Zhou Q.Persistent organochlorine residues in sediments from Chinese river/estuary systems.Environmental Pollution,1999,105(1):143-150.
    [54]司毅铭,周艳丽,张曙光等.黄河泥沙对水中有机污染物测定的影响研究.人民黄河,2005,27(10):49-50.
    [55]Liu J P,Milliman J D,Gao S,et al.Holocene development of the Yellow River's subaqueous delta,North Yellow Sea.Marine Geology,2005,209(1-4):45-67.
    [56]赵炳梓,张佳宝,周凌云等.黄淮海典型农业土壤中六六六(HCH)和滴滴涕(DDT)的残留量研究.土壤学报,2005,42(5):762-767.
    [57]Lammel G,Ghim Y S,Grados A,et al.Levels of persistent organic pollutants in air in China and over the Yellow Sea.Atmospheric Environment,2007,41(3):452-464.
    [58]马吉星,张继宇.黄河下游河槽横断面宽深比变化规律及河型判别研究.黄河水利职业技术学院学报,2004,16(1):14-15.
    [59]刘兆荣,陈忠明,赵广英等.环境化学教程.北京:化学工业出版社,2003.
    [60]董雪娜.黄河水质变化浅析.人民黄河,1992,3:15-18.
    [61]Li Y F,Cai D J,Shan Z L,et al.Gridded usage inventories of technical hexachlorocyclohexane and lindane for China with 1/6° latitude by 1/4° longitude resolution.Archives of Environmental Contamination and Toxicology,2001,41(3):261-266.
    [62]Li Y F,Scholtz M T,Van Heyst,et al.Global gridded emission inventories of β-hexachlorocyclohexane.Environmental Science and Technology,2003,37(16):3493-3498.
    [63]徐殿斗,仲维科,邓琳琳等.松叶中有机氯农药HCH、DDT的研究.中国环境科学,2002,22(6):481-484.
    [64]Ockenden W A,Steinnes E,Parker C,et al.Observations on persistent organic pollutants in plants:Implications for their use as passive air samplers and for POP cycling.Environmental Science and Technology,1998,32(18):2721-2726.
    [65]暴维英,张绍峰,汪金成等.黄河三门峡—花园口河段有机农药的污染现状研究.环境科学研究,1991,4(2):62-63.
    [66]吴水平,曹军,李本等.城市大气颗粒物中有机氯农药的含量与分布.环境科学研究,2003,16(4):37-39.
    [67]胡庆永,李庆孝.山东省有机氯农业调查研究.山东农业大学学报,1986,17(2):67-73.
    [68]孙剑辉,王国良,张干等.黄河中下游表层沉积物中有机氯农药含量及分布.环境科学,2007,28(6):1333-1337.
    [69]付保荣,惠秀娟.生态环境安全与管理.北京:化学工业出版社,2005.
    [70]杨伟英.松花江上游高浓度污染带正通过哈尔滨市区.黑龙江日报,2005-11-25[2006-03-10].http://news.sina.com.cn/c/2005-11-25/09447536480s.shtml.
    [71]顾瑞珍,陈菲.24日14时松花江四方台段硝基苯浓度超标14倍.新华网,2005-11-24[2006-03-10].http://www.nyrx.cn/news/show.asp?url=NewsNews/c/2005-11-24/19267530446s.shtml.
    [72]顾瑞珍.环保总局通报:松花江污染带已经移至巴彦县境内.新华网,2005-11-28[2006-03-10].http://news.xinhuanet.com/politics/2005-11/28/content_3847219.htm.
    [73]Mackay D,Paterson S,Schroeder W H.Model describing the rates of transfer processes of organic chemicals between atmosphere and water.Environmental Science and Technology,1986,20(8):810-816.
    [74]瑞恩P.施瓦茨巴赫,菲利普M.施格文,迪特尔M.英博登.环境有机化学.王连生译.北京:化学工业出版社,2004.
    [75]马欢.松花江哈尔滨段水环境容量研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [76]黑龙江统计年鉴2004.北京:中国统计出版社,2004.
    [77]曹红英,梁涛,陶澍.1950年以来BHC在杭州环境中积累、迁移与残留动态的模拟研究.环境科学学报,2005,25(4):475-482.
    [78]金子,李青山等.松花江水中有机污染物的GC/MS定性定量分析.质谱学报,1998,19(1):33-42.
    [79]于晓菲.应用多介质环境模型评价典型有机物污染物的环境行为:(硕士学位论文).大连:大连理工大学,2006.
    [80]中华人民共和国国家统计局.中国统计年鉴2006.北京:中国统计出版社,2006.
    [81]呼涛.池州日报.松花江高浓度污染带离开哈尔滨.2005,11,27[2006-03-10].http://www.czrb.com/news/gnxw/cbrb1128c8.htm.
    [82]朗佩珍,龙凤山,袁星等.松花江中游(哨口—松花江村段)水中有毒有机物污染研究.环境科学进展,1993,1(6):48-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700