用户名: 密码: 验证码:
高温高压下ZnO和GaN材料热力学特性的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
简要介绍了国内外关于材料热力学特性的研究现状及最新进展,确定ZnO和GaN晶体材料作为研究对象,利用分子动力学(MD)方法和Buckingham经验对势模型对ZnO岩盐结构和GaN闪锌矿结构高温高压下的热力学特性进行了数值模拟,检验了相互作用势模型的可靠性;研究了0~150GPa压力范围内ZnO岩盐结构和GaN闪锌矿结构以及地球下地幔组成物质MgO的熔化特性;预测了300~3000K和0~150GPa的温压范围内ZnO岩盐结构和GaN闪锌矿结构的等温体模量和热膨胀特性,同时对GaN闪锌矿结构的热容及Grüneisen参数作了计算,对这两种材料热力学特性给出了一些规律性认识。
     首先对ZnO闪锌矿结构常压下的熔化进行MD模拟,发现存在过热熔化现象,通过与实验(2248K)比较得到其过热48%的结论,然后利用该结论修正得到了岩盐结构的ZnO和闪锌矿结构的GaN在常压下的熔化温度以及ZnO的高压熔化相图。岩盐结构的ZnO和闪锌矿结构的GaN常压下的熔化温度分别为2465K和2327K,其中岩盐结构的ZnO高压熔化曲线在压力低于7GPa时和由Lindemann熔化方程得到的结果吻合。MgO高压熔化曲线和Wang经验模型得到的结果在0~100GPa的压力范围内也十分吻合。
     用MD方法对ZnO岩盐结构的等温体模量及热膨胀特性进行了数值计算,同时对GaN闪锌矿结构的晶格常数、相变压力(从闪锌矿到岩盐结构)、热膨胀系数、等温体模量、热容及Grüneisen参数作了计算。利用MD方法得到的ZnO岩盐结构零压下的等温体模量、热膨胀系数及GaN闪锌矿结构常态下的等温体模量、热膨胀系数、热容、Grüneisen参数与其它理论及实验结果作了比较,对等温体模量、热膨胀系数等参量高温高压下的热力学行为进行了预测,预测压力和温度分别高达150GPa和3000K。结果表明:等温体模量随压缩比的增加而增加,随温度的增加而减小;体积热膨胀系数随压力的增加逐渐减小,在压力较低时随温度的增加而增加;闪锌矿结构的GaN热容随温度的增加而增加,等容热容随体积的增加而减小,等压热容随压力的增加而减小,高压时温度对等压热容的影响较之低压平缓;Grüneisen参数随体积的增加而增加。以上热力学参数在凝聚态物理学的研究中具有一定的应用背景和科学意义。
This dissertation gives a brief introduction of the developed history and latest investigation about the thermodynamic properties of substance. The focus is on the behavior of the ZnO and GaN. The Buckingham potential has been employed to simulate the thermodynamic properties of ZnO with rock-salt structure and GaN with zinc-blende structure at high pressures and temperatures using molecular dynamics (MD) method. Firstly, The reliability of the present potential model has been verified. Secondly, the melting of ZnO with rock-salt structure, GaN with zinc-blende structure and the Earth-forming mineral, MgO, have been investigated in the pressure range of 0~150GPa. Finally, the isothermal bulk modulus and thermal expansion coefficient of the rock-salt phase of ZnO and the zinc-blende phase of GaN have been predicted in the pressure range of 0~150GPa and in the temperature range of 300-3000K. The heat capacity and Gruneisen parameter of zinc-blende phase of GaN have also been calculated. The fundamental conclusions about the two materials have been obtained.In this paper, we firstly investigated the melting of ZnO with zinc-blende structure at normal pressure using MD simulations and found superheating existed. The degree of superheating was 48% compared with experimental data 2248K. According to the result of superheating of ZnO with zinc-blende structure, we have modified that the room pressure melting temperatures of the rock-salt phase of ZnO and the zinc-blende phase of GaN. Meanwhile, the melting curve of the rock-salt phase of ZnO obtained by MD method is also given. The melting temperatures 2465K of the rock-salt phase of ZnO and 2327K of the zinc-blende phase of GaN have been obtained at normal pressure, respectively. The melting curve of the rock-salt phase of ZnO from MD calculations is in good agreement with the results obtained from Lindemann melting equation in the pressure below 7GPa. The extrapolated melting temperatures for MgO in the lower mantle are in good agreement with the results obtained from Wang's empirical model up to 100GPa.The isothermal bulk modulus and thermal expansivity of the rock-salt phase of ZnO have been investigated using MD method. The structural and thermodynamic properties of the
    zinc-blende phase of GaN including lattice constant, phase transition pressure (from the zinc-blende to the rock-salt structure), thermal expansion, isothermal bulk modulus, specific heat and Gruneisen parameter have also been investigated systematically. The calculated null compression isothermal bulk modulus and bulk thermal expansion coefficient of the rock-salt phase of ZnO, and isothermal bulk modulus, thermal expansion coefficient, heat capacity and Gruneisen parameter of the zinc-blende phase of GaN under normal state are compared with the available experimental data and other theoretical results. At an extended temperature and pressure ranges, the isothermal bulk modulus and bulk thermal expansion coefficient have also been predicted up to 3000K and 150GPa based on the reliable potential model. Note that the isothermal bulk modulus decreases with elevating temperatures and increases with increasing compression ratio. Bulk thermal expansion coefficient decreases with increasing pressures, and increases with elevating temperatures at lower pressures. Heat capacity of the zinc-blende phase of GaN increases with elevating temperatures, constant-volume heat capacity decreases with increasing volumes, and constant-pressure heat capacity decreases with increasing pressures. Compared with lower pressures, the influence of temperature is small for constant-pressure heat capacity at high pressures. Gruneisen parameter of the zinc-blende phase of GaN increases with increasing volumes. The thermodynamic parameters mentioned above are of fundamental importance in condensed matter physics.
引文
[1] Q. F. Chen, L. C. Cai, D. Q. Chen, F. Q. Jing, Physica B 348(2004) 299
    [2] 蔡灵仓,陈其峰,经福谦,陈栋泉,中国科学(A辑)30(2000)266
    [3] 王春奎,高压物理学报 8(1994)213
    [4] 龚自正,高压物理学报 16(2002)152
    [5] 经福谦,实验物态方程导引(第二版),北京:科学出版社 1999
    [6] N. Metropolis, A. W. Rosenbluth, A. H. Teller, E. teller, Chem. Phys. 21 (1953) 1087
    [7] Q. F. Chen, L. C. Cai, D. Q. Chen, F. Q. Jing, Chin. Phys. 13(2004) 1091
    [8] Q. F. Chen, L. C. Cai, S. Q. Duan, D. Q. Chen, J. Phys. Chem. Solids 65(2004) 1077
    [9] Z. J. Liu, X. L. Cheng, H. Zhong, L. C. Cai, Chin. Phys. 13(2004) 384
    [10] Z. J. Liu, X. L. Cheng, X. R. Chen, H. Zhong, L. Y. Lu, Chin. Phys. 13(2004) 1096
    [11] R. Boehler, Nature 363(1993) 534
    [12] R. W. Cahn, Nature 323(1986) 668
    [13] R. W. Cahn, Nature 413(2001) 582
    [14] F. A. Lindemann, Z. Phys. 11(1910) 609
    [15] M. Born, J. Chem. Phys. 7(1939) 591
    [16] J. Dages, H. Gleiter, J. H. Perepezko, Phys. Lett. A 119(1986) 79
    [17] B. Kapusta, M. Guillope, Phys. Earth. Planet. Int. 75(1993) 205
    [18] M. Matsui, G. D. Price, Nature 351(1991) 735
    [19] Z. H. Jin, P. Gumbsch, K. Lu, E. Ma, Phys. Rev. Lett. 87(2001) 055703
    [20] J. J. Gilvarry, Phys. Rev. 102(1956) 308
    [21] G. C. Kraut, G. C. Kennedy, Phys. Rev. 151(1966) 668
    [22] Z. Wang, F. Tutti, S. K. Saxena, High Temp.-High Press. 33(2001) 357
    [23] O. L. Anderson, Equation of State of Solids for Geophysics and Ceramic Science, New York: Oxford University Press 1995
    [24] O. L. Anderson, Phys. Earth Planet. Inter. 112(1999) 267
    [25] Z. Wang, H. Mao, S. K. Saxena, J. Alloys Compounds 299(2000) 287
    [26] Z. Wang, P. Lazor, S. K. Saxena, Materials Letterts 49(2001) 287
    [27] Z. Wang, Phys. Earth Planet. Inter. 115(1999) 219
    [28] R. L. Andrew, Molecular Modeling: Principle and Practice. Berlin Heidelbeg: Springer-Verlag 1996
    [29] T. Nguyen, P. S. Ho, T. Kwok, Phys. Rev. Lett. 57(1986) 1919
    [30] J. D. Honeycutt, H. C. Andersen, J. Chem. Phys. 91(1987) 4950
    [31] A. B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. B 61(2000) 11928
    [32] A. B. Belonoshko, G. Gutierrez, R. Ahuja, B. Johansson, Phys. Rev. B 64(2001)184103
    [33] O. L. Anderson, D. Isaak, H. Oda, Rev. Geophys. 30(1992) 57
    [34] A. B. Belonoshko, L. S. Dubrovinsky, Am. Mineral. 81(1996) 303
    [35] R. Ferneyhough, D. Fincham, G. D. Price, M. J. Gillan, Model. Sim. Mat. Sci.Eng. 2(1994) 1101
    [36] L. Vocadlo, G. D. Price, Phys. Chem. Minerals 23(1996) 42
    [37] G. V. Lewis, C. R. A. Catlow, J. Phys. C. 18(1985) 1149
    [38] A. Zerr, R. Boehler, Nature 371(1994) 506
    [39] M. Matsui, J. Chem. Phys. 108(1998) 3304
    [40] A. B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 87(2001) 165505
    [41] V. V. Kechin, Phys. Rev. Lett. 89(2002) 119601
    [42] A. B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 89(2002) 119602
    [43] A. B. Belonoshko, 0. Lebacq, R. Ahuja, B. Johansson, J. Chem. Phys. 117(2002)7233
    [44] T. Tsuchiya, K. Kawamura, J. Chem. Phys. 117(2002) 5859
    [45] T.K. Gupta, J. Am. Ceram. Soc. 73(1990) 1817
    [46] D. C. Reynolds, D. C. Look, B. Jogai, Solid State Commun. 99(1996) 873
    [47] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voight, B. E. Gnade, J. Appl. Phys. 79(1996) 7983
    [48] F. Hamdani, A. E. Botchkarev, H. Tang, W. Kim, H. Morkoc, Appl. Phys. Lett.71(1997) 3111
    [49] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto,
     Appl. Phys. Lett. 70(1997)2230
    [50] S. Nakamura, M. Senoh, T. Mukai, Appl. Phys. Lett. 62(1993) 2390
    [51] S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10(1992) 1237
    [52] J. I. Pankove, Mater. Res. Soc. Symp. Proc. 162(1990) 515
    [53] T. Sekiguchi, J. Cryst. Growth 214(2000) 72
    [54] H. Michael Huang, Science 292(2001) 8
    [55] J. W. Nielsen, E. F. Dearborn, J. Phys. Chem. 64(1962) 1762
    [56] B. M. Wanklyn, J. Cryst. Growth 7(1970) 107
    [57] M. Ushio, Y. Sumiyoshi, J. Mater. Sci. 28(1993) 218
    [58] A. C. Walker, J. Am. J. Sci. 34(1912) 341
    [59] R. A. Laudise, A. A. Ballman, J. Phys. Chem. 64(1960) 688
    [60] S. Nakamura, Phys. Stat. Sol. A 176(1999) 15
    [61] J. Y. Duboz, Phys. Stat. Sol. A 176(1999) 5
    [62] 郭宝增,物理学报51(2002)2344
    [63] L. Liu, High-Pressure Research: Applications in Geophysics, New York: Academic 1977
    [64] J. E. Jaffe, A. C. Hess, Phys. Rev. B 48(1993) 7903
    [65] R. Ahuja, L. Fast, O. Eriksson, J. M. Wills, B. Johansson, J. Appl. Phys. 83 (1998) 8065
    [66] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitschell, T. P. Das, P. Blaha, K. Schwartz, M. P. Pasternack, Phys. Rev. B 53(1996) 11425
    [67] J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess, Phys. Rev. B 62(2000) 1660
    [68] C. H. Bates, W. B. White, R. Roy, Science 137(1962) 993
    [69] B. S. Zou, G. L. Zhang, G. Q. Tang, Chin. Sci. Bull, 39(1994) 499
    [70] S. Desgreniers, Phys. Rev. B 58(1998) 14102
    [71] M. Recio, P. Pandey, V. Luana, Phys. Rev. B 47(1993) 3401
    [72] J. M. Recio, M. A. Blanco, V. Luanna, R. Pandey, L. Gerward, J. Staun Olsen, Phys. Rev. B 58(1998)8949
    [73] F. Decremps, J. Zhang, R. C. Liebermann, Europhys. Lett. 51(2000)268
    [74] A. Zaoui, W. Sekkal, Phys. Rev. B 66(2002) 174106
    [75] M. Mizuta, Jpn. J. Appl. Phys. 25(1986) 945
    [76] H. Xia, Q. Xia, A. L. Ruoff, Phys. Rev. B 47(1993) 12925
    [77] M. Ueno, M. Yoshido, A. Onodera, Phys. Rev. B 49(1994) 14
    [78] J. Serrano, A. Rubio, E. Hernandez, A. Munoz, A. Mujica, Phys. Rev. B 62(2000) 16612
    [79] D. E. Boucher, G. G. DeLeo, W. B. Fowler, Phys. Rev. B 59(1999) 10064
    [80] J. Kioseoglou, Ph. Komninou, G. P. Dimitrakopulos, Th. Kehagias, H. M. Polatoglou, G. Nouet, Th. Karakostas, Solid State Electron. 47(2003) 553
    [81] K. Kwiseon, W. R. L. Lambrecht, S. Benjamin, Phys. Rev. B 50(1994) 1502
    [82] V. Fiorentini et al, Phys. Rev. B 47(1993) 13353
    [83] K. Miwa, A. Fukumoto, Phys. Rev. B 48(1993) 7897
    [84] P. E. V. Camp et al, Solid State Commun. 81(1992) 23
    [85] B. J. Min et al, Phys. Re. B 45(1992) 1159
    [86] P. Zapol, R. Pandey, J. D. Gale, J. Phys.: Condens. Matter 9(1997) 9517
    [87] F. Benkabou, P. Becker, M. Certier, H. Aourag, Phys. Status Solidi 209(1998) 223
    [88] W. H. Moon, H. J. Hwang, Phys. Lett. A 315(2003) 319
    [89] M. E. Fine, L. D. Brown, H. L. Marcus, Scr. Metall. 18(1984) 951
    [90] J. A. van Vechten, Phys. Rev. B 7(1973) 1479
    [91] M. Kumar, Physica B 212(1995) 391
    [92] M. Kumar, Physica B 217(1996) 143
    [93] M. Kumar, Physica B 311(2002) 340
    [94] R. Grover, I. C. Getting, G. C. Kennedy, Phys. Rev. B 7(1973) 567
    [95] F. D. Murnaghan, Proc. Nat. Acad. Sci. 30(1944) 244
    [96] F. D. Murnaghan, Finite Deformation of an Elastic Solid, New York: Wiley 1951
    [97] 黄昆 原著,韩汝琦 改编,固体物理学,北京:高等教育出版社 1988
    [98] O. L. Anderson, J. Geophys. Res. 72(1967) 3661
    [99] O. L. Anderson, H. Oda, D. Isaak, Geophys. Res. Lett. 19(1992) 1987
    [100] A. Chopelas, R. Boehler, Geophys. Res. Lett. 16(1989) 1347
    [101] E. Knittle, R. Jeanloz, Nature 319(1986) 214
    [102] H. K. Mao, R. J. Hemley, Y. Fei, J. F. Shu, A. P. Jepthcoat, Y. Wu, J. Geophys. Res. 96(1991) 8069
    [103] Y. Wang, D. L. Weidner, R. C. Leibermann, X. Lui, J. Ko, M. T. Vaughnm, Y. Zhao, A. Yeganeh-Haeri, R. E. G. Pacalo, Science 251(1991) 410
    [104] X. Xia, J. K. Xiao, J. Phys. Chem. Sol. 54(1993) 629
    [105] S. S. Kushwah, J. Shanker, Physica B 225(1996) 283
    [106] 方俊鑫,陆栋,固体物理学(上册),上海:科学技术出版社 2000
    [107] C. H. Nie, Phys. Stat. Sol. 219(2000) 241
    [108] M. B. Kanoun, W. Sekkal, H. Aourag, G. Merad, Phys. Lett. A 272(2000) 113
    [109] A. R. Oganov, J. P. Brodholt, G. David Price, Phys. Earth Planet. Inter. 122 (2000) 277
    [110] M. R. Aouas, W. Sekkal, A. Zaoui, Solid State Commun. 120(2001) 413
    [111] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambrighe: Cambridge University Press 1927
    [112] F. Birch, J. Geophys. Res. 57(1952) 227
    [113] F. D. Stacey, Phys. Earth Planet. Inter. 128(2001) 179
    [114] F. D. Stacey, B. J. Brennan, R. D. Irvine, Geophys. Surveys. 4(1981) 189
    [115] F. Birch, Phys. Rev. B 71(1947)809
    [116] A. M. Dziewonski, D. L. Anderson, Phys. Earth Planet. Inter. 25(1981) 197
    [117] J. Shanker, S. S. Kushwah, P. Kumar, Physica B 239(1997)337
    [118] L. M. Thomas, J. Shanker, Phys. Stat. Sol. 181(1994)387
    [119] L. M. Thomas, J. Shanker, Phys. Stat. Sol. 189(1995)363
    [120] S. S. Kushwah, J. Shanker, Physica B 253(1998)90
    [121] M. Kumar, S. S. Bedi, Phys. Stat. Sol. 196(1996) 303
    [122] Z. T. Yan, Commun. Theor. Phys. 17(1992) 389
    [123] H. Cynn, C. S. Yoo, Phys. Rev. B 59(1999)8526
    [124] L. R. Chen, Q. H. Chen, J. Phys.: Condens. Matter. 3(1991) 775
    [125] L. R. Chen, Q. H. Chen, Commun. Theor. Phys. 16(1991) 385
    [126] B.W. Dodson, Phys. Rev. B 35(1987) 2619
    [127] H. Schlosser, J. Ferrante, J. Phys. Chem. Sol. 52(1991) 635
    [128] J. Hama, K. Suito, J. Phys.: Condens. Matter. 8(1996) 67
    [129] J. Shanker, S. S. Kushwah, M. P. Sharma, Physica B 271(1999) 158
    [130] F. D. Stacey, Geophys. J. Int. 143(2000) 621
    [131] M. Kumari, N . Dass, J. Phys. : Condens. Matter. 2(1990) 3219
    [132] B. R. Sushil, B. R. Papiya, J. Phys.: Condens. Matter. 11(1999) 10375
    [133] X.Q. Deng, Z. T. Yan, High Temp. - High Press. 34(2002) 387
    [134] R. Car, M. Parrinello, Phys. Rev. Letter. 55(1985) 2471
    [135] M. Methfessel, M. Van. Schilfgaarde, Phys. Rev. B 48(1993) 4937
    [136] O.K. Anderson, R. G. Wooley, Mol. Phys. 26(1973) 905
    [137] O.K. Anderson, Phys. Rev. B 12(1975) 3060
    [138] M. Springborg, O.K. Anderson, J. Chem. Phys. 87(1987) 7125
    [139] M. Methfessel, M. Van. Schilfgaarde, Int. J. of Mod. Phys. B 7(1993) 262
    [140] S. R. Phillpot, D. Wolf, H. Gleiter, J. Appl. Phys. 78(1995) 847
    [141] J. Schiotz, F. D.D. Tolla, W. Jacobsen, Nature 391(1998) 561
    [142] D.A. Faux, J. Phys. Chem. B 102(1998) 10658
    [143] Y. H. Wen, F. X. Zhou, Y. W. Liu, Chin. Phys. 10(2001) 407
    [144] B. J. Alder, T. E. Wainwright, J. Chem. Phys. 27(1957) 1208
    [145] W.W. Wood, F. R. Parker, J. Chem. Phys. 27(1957) 720
    [146] A. Rahman, Phys. Rev. A 136(1964) 405
    [147] L. Verlet, Phys. Rev. 159(1967) 98
    [148] B. J. Alder, T. E. Wainwright, Phys. Rev. A 1(1970) 18
    [149] A. Rahman, F. H. Stillinger, J. Chem. Phys. 55(1971) 3336
    [150] H. C. Andersen, J. Chem. Phys. 72(1980) 2384
    [151] S. Nose, J. Chem. Phys. 81(1981) 511
    [152] M. Parrinello, A. Rahman, J. Appl. Phys. 52(1981) 7182
    [153] S. Nose, Mol. Phys. 52(1984) 255
    [154] W.G. Hoover, Phys. Rev. A 31(1985) 1695
    [155] C. Massobrio, V. Pontikis, G.Ciccotti, Phys. Rev. B 39(1989) 2640
    [156] R. W. Hockney, Meth. Comp. Phys. 9(1970) 136
    [157] W. C. Swope, H. C. Anderson, P. H. Berens, K. R. Wilson, J. Chem. Phys. 76(1982) 637
    [158] D. Beeman, J. Comp. Phys. 20(1976) 130
    [159] C. W. Gear, Report ANL 7126, Argonne National Lab. 1966
    [160] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equation. Englewood Cliffs, NJ: Prentice-Hall 1971
    [161] B.J. Alder, T. E. Wainwright, J. Chem. Phys. 31(1959) 459
    [162] B. J. Alder, T. E. Wainwright, Phys. Rev. 127(1962) 359
    [163] 钱学森,物理力学讲义,北京:科学出版社 1962
    [164] R. A. Buckingham, Proc. R. Soc. London, Ser. A 168(1938) 234
    [165] 冯端 著,金属物理学第一卷:结构与缺陷,北京:科学出版社 2000
    [166] R. M. J. Cotterill, M. Doyama, In: R. Hasiguti eds. Energier and Atomic Configuration of Line Defects and Plane Defects. Lattice Defects and their Interactions. New York: Gordon and Breach Science Publishers Inc. 1967
    [167] R. A. Johnson, W. D. Wilson, In: P. C. Gehlen et al. eds. Defects Calculations for Fcc and Bcc Metals. Interatomic Potentials and Simulation of Lattice Defects. New York: Plenum 1971
    [168] A. B. Belonoshko, Geochim. Cosmochim. Acta 58(1994)4039
    [169] M. Matsui, Phys. Chem. Miner. 23(1996) 345
    [170] M. M. Kuklja, J. Phys.: Condens. Matter 12(2000) 2953
    [171] G. J. Kramer, N. P. Farragher, B. W. H. van Beest, Phys. Rev. B 43(1991) 5068
    [172] M. S. Daw, M. I. Baskes, Phys. Rev. B 29(1984)8486
    [173] M. W. Finnis, J. E. Sinclair, Philosophic Magazine A 50(1984)45
    [174] G. J. Ackland, V. Vitek, Phys. Rev. B 41(1990) 10324
    [175] F. H. Stillinger, T. A. Weber, Phys. Rev. B 31(1985)5262
    [176] H. Balamame, T. Haliciolu, W. A. Tiller, Phys. Rev. B 46(1982) 2250
    [177] J. Zersoff, Phys. Rev. B 39(1989) 5566
    [178] F. Z. Aoumeur, Kh. Benkabou, B. Belgoumene, Physica B 337(2003) 292
    [179] D. W. Heermann, Computer Simulation Methods in Theoretical Physics. Berlin:
    ??Springer-Verlag 1990
    [180] K. H. Hoffmann, M. Schreiber, Computational Physics. Berlin Heidelberg: Springer-Verlag 1996
    [181] H. J.C. Berebdsen, J. P. M. Postma, W. F. V. Gunsteren, J. Chem. Phys. 81(1984) 3684
    [182] W. G. Hoover, Computational Statistical Mechanics, New York: Elsenieer 1991
    [183] S. Nose, J. Chem. Phys. 81(1984) 5
    [184] W.G. Hoover, Phys. Rev. A 31(1985) 1695
    [185] H.C. Anderson, J. Chem. Phys. 72(1980) 2384
    [186] M. Parrinello, A. Rahman, J. Appl. Phys. 52(1981) 7182
    [187] M. Parrinello, A. Rahman, J. Chem. Phys. 76(1982) 2662
    [188] D. Fincham, Mol. Simul. 8(1992) 165
    [189] B.G. Dick, A. W. Overhauser, Phys. Rev. 112(1958) 90
    [190] J. Chakravorty, E. Clementi, Phys. Rev. A 39(1989) 2290
    [191] K. Lu, Y. Li, Phys. Rev. Lett. 80(1998) 4474
    [192] H.J. Fecht, W. L. Johnson, Nature 334(1983) 50
    [193] J.L. Tallon, Nature 342(1989) 658
    [194] B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S. I. Anisimow, Phys. Rev. B 65(2002) 092103
    [195] S. N. Luo, T. J. Ahrens, Appl. Phys. Lett. 82(2003) 1836
    [196] F. Ercolessi, Springer College in Computational Physics, Trieste: ICTP 1997
    [197] Y. Fei, Mineral. 84(1999) 272
    [198] H. Lowen, Phys. Rep. 237(1994) 249
    [199] T. Nakayama, M. Murayama, J. Cryst. Growth 214/215(2000) 299
    [200] H.W. Kim, N. H. Kim, Appl. Surf. Sci. 236(2004) 192
    [201] W.H. Bragg, J. A. Darbyshire, J. Met. 6(1954) 238
    [202] J.A. van Vechten, Phys. Rev. B 7(1973) 1479
    [203] V. Fiorentini, A. Satta, D. Vanderbilt, S. Massidda, F. Meloni, The Physics of Semiconductors, Singapore: World Scientific 1995
    [204] C. Stampfl, C. G. Van de Walle, Phys. Rev. B 59(1999) 5521
    [205] C. Persson, A. Ferreira da Silva, R. Ahuja, B. Johansson, Journal of Crystal Growth 231(2001) 397
    [206] J. P. Perdew, Y. Wang, Phys. Rev. B 45(1992) 13244
    [207] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865
    [208] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, J. Scanlon, Appl. Phys. Lett. 59(1991) 944
    [209] T. Lei, T. D. Moustakas, R. J. Graham, Y. He, S. J. Berkowitz, J. Appl. Phys. 71(1992) 4933
    [210] A. Trampert, O. Brandt, K. H. Ploog, in: J.I. Pankove, T. D. Moustakas (Eds.), Crystal Structure of Group III Nitrides, in: Semiconductors and Semimetals, Vol. 50 San Diego: Academic Press 1998
    [211] M. J. Paisley, Z. Sitar, J. B. Posthill, R. F. Davis, J. Vac. Sci. Technol. A 7(1989) 701
    [212] K. Kim, W. R. L. Lambrecht, B. Segall, Phys. Rev. B 53(1996) 16310
    [213] M. E. Sherwin, T. J. Drummond, J. Appl. Phys. 69(1991) 8423
    [214] I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Berlin: Springer-Verlag 1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700