用户名: 密码: 验证码:
黄海冷水团新生产力及微食物环作用年变化特征的模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄海冷水团是我国陆架浅海上一个重要的海洋现象,一直倍受我国物理海洋学家关注。近年来对黄海冷水团水域的物理及生物化学特性的研究受到了周边国家的重视并取得了重要进展,但是生态动力学方面的数值研究仍很缺乏。本文的主要研究目标是对已经建立的黄海冷水团水域水层—底栖耦合生态系统垂直一维模型进行改进及参数优化,对该海区浮游生态系统基本生态变量垂向结构的季节变化特征、物流能流结构特征进行模拟分析,并着重对初级生产力、新生产力以及浮游生态效率和微食物环的贡献等问题进行比较详细的动力学研究,以增进对黄海生态动力学的深入理解。
     首先根据黄、东海生态综合调查资料和前人的研究成果,分析了黄海冷水团水域水层生态系统的基本特征。然后根据2003年9月黄、东海海面太阳辐射的观测资料,验证了应用Dobson & Smith模型计算海面太阳辐射和构造辐射场的可行性,为缺乏海面太阳辐射实测资料的海洋生态系统模拟提供了有力保证。接下来对生源要素的模拟结果进行了分析,并着重对黄海冷水团的初级生产力、新生产力进行了分析研究。本文的最后一部分针对模拟区域初级生产力低下而浮游生态效率却比较高的问题进行分析,说明了微食物环在浮游动物的生产过程中所扮演的举足轻重的角色。
     研究采用的模型共分为水层和底栖生态系统两部分,并考虑了二者之间的耦合。模型采用箱式模型,将模拟区域水层根据温跃层与真光层位置由上而下分为三个箱子。三个箱子都包含了水层生态亚模型,它主要考虑了浮游植物(P)、浮游动物(Z)、颗粒有机物(POC)、溶解有机物(DOC)、总无机氮(TIN)、总无机磷(TIP)和溶解氧(DO)7个生态变量;底层箱子还考虑了底栖生态亚模型,其中包含大型底栖生物(MacroB)、小型底栖生物(MeioB)、底栖细菌(Bbac)、沉积物有机碎屑(Det)、间隙水中的总无机氮(BTIN)和总无机磷(BTIP)6个生态变量。水层和底栖生态系统的耦合是通过浮游植物与颗粒有机物的沉降和沉积物中营养盐的溶出实现的。表层箱子考虑了营养盐的大气干湿沉降输送。另
The Yellow Sea Cold Water Mass (YSCWM), as an important oceanic phenomenon in the marginal sea of China, is one of the research focus of oceanographers for long time. Though great achievements have been achieved in physical and biochemical oceanography in the YSCWM, the numerical studies of ecosystem dynamics remain scarce. The main purpose of this paper is to explore the seasonal variation of the vertical structure of each variable and the flow characteristics of matter and energy in the ecosystem of the YSCWM based on one-dimensional coupled pelagic-benthic box model. The issues of primary productivity, new production, planktonic ecological efficiency and the impact of microbial loop will be analyzed in detail, to better the understanding of the eco-dynamics in the Yellow Sea.The basic ecosystem characters in the YSCWM are outlined according to former studies and observation in the Yellow Sea and the East China Sea in the first part of this paper. Then the feasibility of using Dobson and Smith model to calculate daily sea-surface solar radiation in the Yellow Sea is tested, which provide assurance for the ecosystem numerical study with lacking of solar radiation observation on the ocean surface. The simulated results of primary productivity and new production in the YSCWM are analyzed in the following part. The last part illustrates that the microbial food loop plays an important role in the course of zooplankton production in the region of low primary productivity. The last two parts is the emphasis of this paper.The model is divided into three boxes according to the depths of thermocline and euphotic layer. All the three boxes contain pelagic submodel which includes seven state variables such as phytoplankton (P), zooplankton (Z), particle organic carbon (POC), dissolved organic carbon (DOC), dissolved oxygen (DO), total inorganic nitrogen (TIN) and total inorganic phosphate (TIP). Besides, the lower box contains
    the benthic submodel which includes six variables such as macrobenthos (MacroB), meiobenthos (MeioB), benthic bacteria (Bbac), detritus (Det), total benthic inorganic nitrogen (Btin) and total benthic inorganic phosphate (Btip). The pelagic-benthic coupling is realized by the deposition of phytoplankton and POC into detritus and the transportation of nutrient elements from the bottom to the pelagic. In this model, the effect of microbial loop is considered in a parameterization way. The vertical flux between compartments of the model system is also taken into account.The seasonal variation of each variable in the YSCWM ecosystem is simulated by the coupled pelagic-benthic model, and the results matches well with the observational data and the related literatures, which indicated that the model could depicts the main characters of seasonal variation in the YSCWM ecosystem. The relationship between each variable and the ecologic difference between different layers are simulated reasonably. Generally, the model is competent for the simulation of matter and energy flow characteristics of the ecosystem in the YSCMW.Through the simulation and analysis to the primary productivity and new production in the YSCWM, the annual mean primary productivity estimated as 239mgCm-2d-1, and f-ratio is calculated about 33% according to analyze the origin ofinorganic nitrogen. So the new production is about 28.8 mgCm-2 d-1. The result also reveals that, in the period of time when the Cold Water Mass exists, the nutrient is deficient so that the production of the phytoplankton is restricted, just an insignificant bloom appears in the late fall. However, in this period, the biomass of zooplankton is in the same order as the phytoplankton and the values are relatively close, In the area of YSCWM, the simulated planktonic ecological efficiency is as high as 0.47. Therefore, the microbial loop plays a crucial role in the cycle flow of the matter and energy. Besides, the simulation results also show that 60% of the organic carbon of zooplankton growing requires is supplied by the microbial loop. The contribution of POC to the zooplankton production is less than the phytoplankton. These three energy flows have obvious seasonal variability. Compared with the observation and the literatures, it is found that the simulation results of the model are reasonable and
    authentic.
引文
[1] Akihiro Shiomoto, Hiroki, Asami. High-west and Low-east distribution patters of chlorophyll a, primary productivity and diatoms in the subartic north Pacific surface waters, midwinter 1996. Journal of Oceanography, 1999, 55: 493-503
    [2] Akiyoshi Shinada, Syuhei Ban and Tsutomu Ikeda. Seasonal changes in Nano/Micro-Zooplankton Herbivory and Heterotrophic Nano-Flagellates Bacterivory off Cape Esan, Southwestern Hokkaido, Japan. Journal of Oceanography, 2003, 59: 609-618
    [3] Azam F. Fenchel T, Gray J G, et al. the ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263
    [4] Azumaya T., Y. Isoda, S. Noriki. Modeling of the spring bloom in Funka Bay, Japan. Continental Shelf Research, 2001, 21: 473-494
    [5] Baretta J & P Ruardij. Tidal flat estuaries. Spring-Verlag (chap. 7, 8), 1988
    [6] Beukema J., B. J. Baratta, eds. European Regional Seas Ecosystem Model-Ⅰ. Neth. J. Sea Res. 1995, 33(3/4)
    [7] Blackford J C & P J Radford. A structure and Methodology for Marine Ecosystem Modeling. Netherlands Journal of Sea Research, 1995, 33 (3/4): 247-260
    [8] Burkill P H, Edwards E S, John A W G, et al. Microzooplankton and their herbivorous activity in the north-eastern Atlantic Ocean. Deep-Sea Res Ⅱ, 1993, 40: 479-493
    [9] Byung C. Cho, Myung G. Park, Jae H. Shim et al. Sea-surface temperature and f ratio of bacterial production to primary production in the Yellow Sea. Marine Ecology Progress Series, 2001, 216: 31-41
    [10] Calbet A, M R Landry. Mesozooplankton influnces on the microbial food web: Direct and indirect trophic interactions in the oligotrophic open ocean. Limnol. Oceanogr., 1999, 44: 1370-1380
    [11] Cui Maochang, Wong Rong, Hu Dunxin. Simple ecosystem model of the central part of the East China Sea in spring. Chin J Oceanol Liminaol., 1997, 15(1): 80-87
    [12] Chen C., R. C. Beardsley, P. J. S. Franks. A 3-D prognostic numerical model study of Georges bank ecosystem. Part Ⅰ: physical model. Deep-Sea Research Ⅱ, 2001, 48: 419-456
    [13] Chung CS. S H Kim, D J Kang et al. Primary productivity and dynamics of nutrients and dissolved oxygen in summer in the Central Yellow Sea. Yellow Sea Res, 1991, 4: 89-102
    [14] Chung C S, Hong G H, Kim S H, et al. Shore based observation on wet deposition of inorganic nutrients in the Korean Yellow Sea coast. The Yellow Sea, 1998, 4: 30-39
    [15] Dobson F. W. & S. D. Smith. Bulk models of solar radiation at sea. Quarterly Journal of the Royal Meteorological Society, 1988, 114, 165-182
    [16] Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol, Oceanogr., 1967,12:196-205
    [17]EbenhohW, CKohlmeier, PJRadford, 1995. The benthic biological submodel in the European regional Seas ecosystem model. NJSR, 33(3/4): 423-452
    [18] Eigenheer A., W. Kuhn et al. On the sensitivity of ecosystem box model simulations on mixed-layer depth estimates. Deep-Sea Research I, 1996, 43(7): 1011 -1027
    [19] Eppley R W. Temperature and phytoplankton growth in the sea. Fish Bill, 1972, 70: 1063-1085
    [20] Eppley, R. W. & Peterson, B. J., Particulate organic matter flux and planktonic new production in the deep sea Nature, 1979,282(13):677-689
    [21] Franks P. J. S., C. Chen. A 3-D prognostic numerical model study of Georges bank ecosystem. Part II: biological-physical model. Deep-Sea Research II, 2001,48:457-482
    [22] Fuhrman J A. Bacterioplankton secondary production estimates for coastal waters of British Columbia, and California. Appl Environ Microbial, 1980,39(6): 1085-1095
    [23] Gifford,D.J. The protozoan-metazoan trophic ling in pelagic ecosystems. J. Protozool.,1991,38:81-86
    [24] Gifford,D.J. and M.J.Dagg. The microzooplankton-mesozooplankton link: consumption of the planktonic protozoa by the calanoid Acartia Tonsa Dana and Neocalanus plumchrus Murukawa. Mar. Microb. Food Web., 1991,5:161-177
    [25] Gregoire, M., G Lacroix. Study of the oxygen budget of the Black Sea waters using a 3D coupled hydrodynamical-biogeochemical model. Journal of Marine Systems, 2001, 31: 175-202
    [26] Hagstrom A, Azam F, Anderson A, et al. Microbial loop in an oligrophic pelagic marine ecosystem. Mar Ecol Prog Res, 1988,49: 171-178
    [27] Hagstrom A, Larsson U, Horstedt P, et al. Frequency of dividing cells, anew approach to the determination of bacterial growth rates in aquatic environment. Appl Environ Microbial, 1979,37:805-812
    [28] Hao Wei, Jun Sun, Andreas Moll, et al. Phytoplankton dynamics in the Bohai Sea—observations and Modelling. Journal of Marine Systems, 2004,44:233-251
    [29] Hong G H, C S Chung, D J Kang et al. Synoptic distribution of nutrients and major biogeochemical provinces in the Yellow Sea. Proceeding of ISEE 1993
    [30] Hong G H,, Kim S H, Chung C S et al. The role of the anthropogenic nutrient input in the carbon fixation of the coastal ocean Yellow Sea: A preliminary study. In: Handa N, Ohsumi T(eds): Direct Ocean Disposal of Carbon Dioxide, 1995, pp: 13-22
    [31] Jiao N. Z. and Xiao T. Bacterial secondary production in Jiaozhou Bay. In: Marine ecology research in Jiaozhou Bay, Dong J. H., Jiao N. Z. (ed). Science press, Beijing, China. 1995, pp112-117
    [32] Johnson P W ,Sieburth J Mcn. Chroococcoid canobacteria in the sea: a ubiquitous and diverse photrophic biomass. Limnol Oceanogr, 1979,24:928-935
    [33] Jprgensen H. Handbook of environmental data and ecological parameter. ISEM, 1979
    [34] K.L. Denman. Modelling planktonic ecosystems: parameterizing complexity. Pro. in Oceanography, 2003,57:429-452
    [35] Koblentz-Mishke O I, Primary production of the world ocean [A]. Zenkeuitch I. A. Programmai Metodika Izuchenija Biogeoenozov Vonoj sredy [C]. Zauka Moscow, 1970, 66-68
    [36] Kowe R., R. E. Skidmore, B. A. Whitton et al. Modelling phytoplankton dynamics in the River Swales, an upland river in NE England. The Science of the Total Environment, 1998, 210/211:535-546
    [37] Landry M R, Constantinou J, Kirshtein J. Microzooplankton grazing in the central equatorial Pacific during February and August. Deep-Sea Res II, 1995,42:657-671
    [38] Landry M R, R P Hassett. Estimating the grazing impact of marine micro-zooplankton. Mar Biol, 1982, 67: 283-288
    [39] Li W K W, Subba R D V, Harrison J G Autotrophic picoplankton in the tropical ocean. Science, 1983,219: 292-295
    [40] Liu Sumei, Zhang Jing, et al. Invebtory of nutrient compounds in the Yellow Sea. Continental Shelf Research, 2003, 23:1161-1174
    [41] Mohammad I Badran, Mohammad Rasheed, Riyad Manasean et al. Nutrient flux fuels the summer primary productivity in the oligotrophic waters of the Gulf of Aqaba, Red Sea. Oceanologia,2005,47( 1 ):47-60
    [42] Moll A & G Radach. Application of Dobson And Smith's solar radiation model to German Bight data Q. J.R. Meteorol. Soc., 1991, 117: 845-851
    [43] Morten D., Skogen og, Herik Soiland. A user's guide to norwecom V2.0: The Norwegian ecological model system. Fisken OG Havet NR, 1998
    [44] Nakamura Y, K Suzuki, S Suzuki, et al. Production of Oikopleura diocia(Appendicularia) following a picoplankton 'bloom' in a eutrophic coastal area. Plankton Res., 1997,19: 113-124
    [45] Nakata K., K. Taguchi. Numerical simulation of eutrophication model in coastal bay estuary. Development of Ecology and Environmental Quality, 1982, 2: 357-366
    [46] Ning XR,et al. Size-fractionated biomass and productivity of phytoplankton and particulate organic carbon in the Southern Ocean. Polar Biol, 1993, 4:17-28
    [47] Ning Xiuren, Shi Junxian, Liu Zilin, et al. The abundance and distribution of Synechococcus in South Pacific. Science in China, 1996, 26(2): 164-171
    [48] Oguz, T., H. W. Ducklow. A physical-biochemistry model of plankton production and nitrogen cycling in the Black Sea. Deep-Sea Research I, 1999, 46: 597-636
    [49] Payne R E. Albedo of the sea surface. Journal of the Atmospheric Science, 1972,29: 959-970
    [50] Pomery L R. The ocean's food web, a changing paradigm. Bioscience. 1974, 24: 499-504
    [51] Radach G Simulations of phytoplankton dynamics and their interactions with other system components during FLES"76. In: Suendermann J. Lena Wed. North Sea Dynamics. Berlin Heidelberg: Springer-Verlag, 1983, pp584-610
    [52] Riley G A, Stommel H and Bumpus D F. Quantitative ecology of plankton of Western North Atlantic. Bull Bingham Oceanogr Coll, 1949, 12: 1-169
    [53] Rivkin, R. B., J. N. Putland, M. R. Anderson and D. Deibel. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific.Deep-Sea Res. II, 1999,46:2579-2618
    [54] Roelke D. L. Copepod food-quality threshold as a mechanism influencing phytoplankton
     sucession and accumulation of biomass, and secondary productivity: a modeling study with management implications. Ecological Modelling, 2000, 134: 245-274
    [55] Ruardij R, Roaphorst W V. Benthic nutrient regeneration in the ERSEM ecosystem of the North Sea. NJSR, 1995, 33(3/4): 453-483
    [56] SavenkoffC, A. F. Vezina,P. C. Smith et al. Summer transports of nutrients in the Gulf of St. Lawrence estiamted by inverse modelling. Estuarine, Coastal and Shelf Science, 2001, 52: 565-587
    [57] Schartau M., A. Oschlies, J. Willebrand. Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method. Deep-Sea Research II, 2001, 48: 1769-1800
    [58] Sellers W. D. Physical Climatology. Chicago: The University of Chicago Press, 1965, pp 272
    [59] Soetaert K., J. J. Middelburg et al. On the coupling of benthic and pelagic biogeochemical models. Earth-Science Reviews, 2000, 51: 173-201
    [60] Steele J. H. Environmental control of photosynthesis in the sea. Limnology and Oceanography, 1962, 7: 137-150
    [61] Steele J. H. The structure of marine ecosystem. Cambridge: Harvard University of Press, 1974
    [62] Steele J. H., E. W. Henderson. Simulation of vertical structure in a planktonic ecosystem. Scottish Fish Report, 1976, 27
    [63] Steemann Nielsen E. Productivity, definition and measurement. J Cons Int Explor Mer., 1952,18:117-140
    [64] Steemann Nielsen E., The Sea, 2, 1963: 129-164
    [65] Su Mei Liu, Jing Zhang and Wen Sheng Jiang. Pore water nutrient regeneration in shallow coastal Bohai Sea, China. Journal of Oceanography, 2003, 59:377-385
    [66] T. Hama, K. H. Shin, N. Handa. Spatial variability in the primary productivity in the East China Sea and its adjacent waters. Journal of Oceanography, 1997, 53:41-51
    [67] Taguchi K., K. Nakata. Analysis of water quality in Lake Hamana using a coupled physical and biochemical model, Modelling hydrodynamically dominated marine ecosystems (Special issue). Journal of Marine Systems, 1998, 16: 107-132
    [68] Takahashi M, Hori T. Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical water. Mar Biol, 1984, 79: 177-186
    [69] Tett, E, A. Edwards et al. A model for the growth of shelf-sea phytoplankton in summer. Estuarine, Coastal and Shelf Science, 1986, 23: 641-672
    [70] Varela R. A., A. Gruzado, J. E. Gabaldon. Modelling primary production in the North Sea using the European Regional Seas Ecosystem Modelp. Netherlands Journal of Sea Research, 1995, 33(3/4): 337-361
    [71] Wan Xiaofang et al. Reanalysis of the Atmospheric Flux of Nutrient Element to the Southern Yellow Sea and the East China Sea. Marine Science Bulletin, 2003, 5(1): 45-51
    [72] Wan Xiaofang, Wu Zengmao, Zhang Zhinan, Lijie. Simulation Study of the Coupled Pelagic-Benthic Ecosystem of the Yellow Sea Cold Water Mass. 2003, (accepted by Chinese Journal of Oceanology and Limnology)
    [73] Wang P. E, J. Martin and G. Morrison. Water quality and eutrophication in Tampa bay, Florida. Estuarine, Coastal and Shelf Science, 1999, 49: 1-20
    [74] Wassmann P. Sedimentation and benthic mineralization of organic detritus in a Norwegian ford. Mar. Biol., 1984, 83: 83-94
    [75] Wassmann P. Relationship between primary production in the boreal coastal zone of the north Atlantic. Limnol. Oceanogr., 1990, 35: 464-471
    [76] Yang S R, Park M G, Hong G H, et al. New and regenerated production in the Yellow Sea. Biogeochemical Processes in the Bohai and Yellow Sea. Hong G H, Zhang J, Chung C S. Seoul: The Dongjin Publication Association, 1999, pp274
    [77] 渤海、黄海、东海海洋图集:水文分册.海洋出版社,1992
    [78] 蔡昱明,宁修仁,刘子琳.珠江口初级生产力和新生产力研究.海洋学报,2002,24(3):101-111
    [79] 柴心玉,高尚德.刘公岛水域内叶绿素a含量和初级生产力.青岛海洋大学学报,1996,26(2):204-211
    [80] 陈飞舟.南海北部和厦门湾海域颗粒物运移过程与输出生产力的同位素示踪研究[博士论文].厦门大学.1997,1-135
    [81] 陈飞舟,黄奕普,陈敏.垂直集成采样法在~(234)Th-~(238)U不平衡研究海洋新生产力中的应用.海洋学报.1999,21(6):40-46
    [82] 陈敏.真光层颗粒动力学—~(234)Th/~(238)不平衡的应用[博士论文].厦门大学.1996,1-153
    [83] 陈敏.黄奕普,陈飞舟,等.真光层颗粒动力学Ⅵ:南海东北部海域上层水体颗粒动 力学的示踪研究.热带海洋,1997,16(2):91-103
    [84] 刁焕祥,沈志良.黄海冷水域水化学要素的垂直分布特征.海洋科学集刊,1985,25:41-51
    [85] 费尊乐.近海水域漫衰减系数的估算.黄渤海海洋,1984,2(1):26-29
    [86] 费尊乐,毛兴华,朱明远等.渤海生产力研究—叶绿素a、初级生产力与渔业资源开发潜力.海洋水产研究,1991,12:55-69
    [87] 管秉贤.黄海冷水团的水文变化及其环流特征的初步研究.海洋与湖沼,1963,5(4):255-283
    [88] 郭炳火.黄海物理海洋学的主要特征.黄渤海海洋,1993,11(3):7-18
    [89] 赫崇本.黄海冷水团的形成及其性质的初步研究.海洋与湖沼,1959,2(1):11-14
    [90] 黄邦钦,洪华生,王大志等.台湾海峡浮游植物生物量和初级生产力的粒级结构和碳流途径.台湾海峡,2002,21(1):23-30
    [91] 黄凌风,郭丰.微食物环及其在能流、物流过程中的作用.In:唐启升,苏纪兰等著,中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000,pp212-217
    [92] J.P 赖利等主编.崔清晨等译.化学海洋学(第二卷).海洋出版社,1980,pp705
    [93] 焦念志,王荣.新生产力——一个新的海洋学研究领域.海洋与湖沼,1993,24(2):205-211
    [94] 焦念志,王荣,黄庆文。~(15)N示踪-离子质谱法测定新生产力的研究.海洋与湖沼,1993,24(1):65-71
    [95] 焦念志,王荣,李超伦.东海春季初级生产力与新生产力的研究.海洋与湖沼.1998,29(2):135-140
    [96] 康德拉捷夫 K.R.著,李怀瑾等译.太阳辐射能.北京:科学出版社,1962.
    [97] 林庆礼,宋云利,杨琴芳等.渤海增殖水化学环境.海洋水产研究,1991,12:11-30
    [98] 刘广山.用低水平放射性测量技术研究海洋新生产力.辐射防护通讯,2000,20(2):1-5
    [99] 刘桂梅,孙文心,雷坤等.黄、东海环流的数值研究Ⅲ正压环流的数值模拟.青岛海洋大学学报,2002,32(1):1-8
    [100] 吕瑞华,夏滨,李宝华等.渤海水域初级生产力10年间的变化.黄渤海海洋,1999,17(3):80-86
    [101] 吕瑞华,朱明远.山东近岸水域的初级生产力.黄渤海海洋,1992,10(1):42-47
    [102] 马有哲等.中国太阳辐射数据集及其质量检验分析.气象科技,1998,No.2,53-56
    [103] 宁修仁.西北太平洋区域初级生产力和对我国海洋初级生产力研究的建议.东海海洋,1984,2(3):78-83
    [104] 宁修仁,刘子琳,蔡昱明.我国海洋初级生产力研究二十年.东海海洋,2000,18(3):13-20
    [105] 宁修仁,刘子琳,史君贤.渤,黄,东海初级生产力的潜在渔获量的评估.海洋学报,1995,17(3):72-84
    [106] 宁修仁,沃格 D.长江口及其毗连东海水域蓝细菌的分布和细胞特性及其环境调节.海洋学报,1991,13:552-559
    [107] 潘友联,郭玉洁,曾呈奎.胶州湾口内初级生产力的周年定点观测.海洋与湖沼,1995,26(3):309-316
    [108] 彭作圣,李丕廉,费修绠.~(14)C安碚的封装技术.海洋与湖沼,1964,6(4):433-436
    [109] 平仲良.用实测海水透明度数据和NOAA卫星数据计算黄海悬浮体含量.海洋与湖沼,1993,24(1):24-30
    [110] 沈国英,施并章.海洋生态学.科学出版社,2002
    [111] 苏纪兰,黄大吉.黄海冷水团环流结构.海洋与湖沼,1995,26(3):1(增刊)
    [112] 沈锦兰,林元烧,杨圣云等.厦门杏林虾池厦冬季微型浮游动物对浮游植物的摄食压力.台湾海峡,2002,21(1):31-36
    [113] 孙军,刘东艳,柴心玉等.1998~1999年春秋季渤海中部及邻近海域叶绿素a浓度及初级生产力估算.生态学报,2003,23(3):517-526
    [114] 孙晟,肖天,岳海东.秋季与春季东、黄海蓝细菌(Synechococcus spp.)生态分布特点.海洋与湖沼,2003,34(2):161-168
    [115] 孙湘平.气候异常引起黄海冷水团及渤海冰情变异的若干例证.海洋湖沼通报,1980,1:1-8
    [116] 孙文心,刘桂梅,江文胜等.黄、东海环流的数值研究Ⅰ黄、东海环流的数值模型.青岛海洋大学学报,2000,30(3):369-375
    [117] 孙文心,刘桂梅,雷坤等.黄、东海环流的数值研究Ⅱ潮及潮致环流数值模拟.青岛海洋大学学报,2001,31(3):297-304
    [118] 唐启升,苏纪兰等著.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000
    [119] 田恬,魏皓,苏健,等.黄海氮磷营养盐的循环收支研究.海洋科学进展,2003,21(1):1-10
    [120] 万小芳.黄海冷水团水域水层—底栖耦合生态系统建模研究.2003,青岛海洋大学硕士学位论文
    [121] 王保栋,王桂云,刘峰.南黄海春季海水化学要素的分布特征.海洋环境科学,1998,17(3):45-50
    [122] 王保栋.南黄海营养盐的垂直分布特性及其垂向输送规律.海洋环境科学,1999a,18(1):13-18
    [123] 王保栋,王桂云,郑昌洙等.南黄海冬季生源要素的分布特征.黄渤海海洋,1999b,17(1):40-45
    [124] 王保栋,王桂云,郑昌洙等.南黄海溶解氧的垂直分布特性.海洋学报,1999c,21(5):72-77
    [125] 王保栋.黄海冷水域生源要素的变化特征及相互关系.海洋学报,2000,22(6):47-54
    [126] 王保栋,单宝田,战闰.黄海生源要素的生物地球化学研究评述.黄渤海海洋,2001,19(2):99-106.
    [127] 王保栋,单宝田,战闰等.黄、渤海无机氮的收支模式初探.海洋科学,2002,26(2):33-36
    [128] 王辉.海洋生态系统模型研究的几个基本问题.海洋与湖沼,1998,29(4):341-346
    [129] 王俊,李洪志.渤海近岸叶绿素和初级生产力研究.海洋水产研究,2002,23(1):23-28
    [130] 王荣,王大志.微食物环的贡献.In:唐启升,苏纪兰等著,中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000,pp251-252
    [131] 魏皓,赵亮,武建平.浮游植物动力学模型及其在海域富营养化研究中的应用.地球科学进展,2001,16(2):220-225
    [132] 翁学传,张以恳,王从敏等.黄海冷水团的变化特征.青岛海洋大学学报,1989,19(1):119-131
    [133] 吴增茂,俞光耀.海洋生态系统动力学模型的基本特征及其研究进展.地球科学进展,1996,11(1):13-18
    [134] 吴增茂,翟雪梅,张志南等.胶州湾北部水层—底栖耦合生态系统的动力数值模拟分析.海洋与湖沼,2001,32(6):588-597
    [135] 夏滨,吕瑞化,孙丕喜.2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径 组成特征.黄渤海海洋,2001,19(4):37-42
    [136] 肖天.海洋细菌在微食物环中的作用.海洋科学,2000,24(7):4-6
    [137] 肖天.海洋浮游细菌的生态学研究.地球科学进展,2001,16(1):60-64
    [138] 肖天,王荣.东海异养细菌生产力的时空分布.海洋与湖沼,2000,31(6):664-670
    [139] 肖天,岳海东,张武昌等.东海聚球篮细菌(Synechococcus)的分布特点及其在微食物环中的作用.海洋与湖沼,2003,34(1):33-43
    [140] 肖天,张武昌,王荣.海洋蓝细菌在微食物环中作用的初步研究.海洋科学,1999,5:48-50
    [141] 肖贻昌,高尚武,张河清.浮游动物.胶州湾生态学和生物资源.北京:科学出版社,1992.170—202
    [142] 熊庆成,丁宗信,赵保仁.秋末南黄海冷水团区溶解氧垂直结构及其最大值的分析研究.海洋科学集刊,1986,27:107-114
    [143] 徐永福.模拟浮游生物的季节变化.生态学报,1993,15(3):245-250
    [144] 徐永福,王明星.海洋生物过程在海洋吸收大气二氧化碳中的作用.气象学报,1998,56(4):436-445
    [145] 闫俊岳等.中国近海气候.北京:气象出版社,1993
    [146] 俞光耀,吴增茂,张志南等.胶州湾北部水层生态动力学模型与模拟(Ⅰ)胶州湾北部水层生态动力学模型.青岛海洋大学学报,1999,29(3):421—428
    [147] 袁业立.黄海冷水团环流(Ⅰ)冷水团中心部分的热结构和环流特征.海洋与湖沼,1979,10(3):187-213
    [148] 袁业立.黄海冷水团环流结构及生成机制研究.中国科学(B),1993,23(1):93
    [149] 张书文.黄海水动力环境及其对生物、化学要素影响之研究.博士后出站报告,2001
    [150] 张书文,夏长水,袁业立.黄海冷水团水域物理.生态耦合数值模式研究.自然科学进展,2002,12(3):315-320
    [151] 张武昌.微型浮游动物的作用.In:唐启升,苏纪兰等著,中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000,224-229
    [152] 张新玲.渤海水层-底栖耦合生态系统的多箱建模和关键性问题的实验研究.青岛海洋大学博士学位论文,2002
    [153] 张新玲,郭心顺,吴增茂等.渤海海面太阳辐射强度的观测分析与计算方法研究.海洋学报.2001,23(2):46-51
    [154] 张志南.水层-底栖生态耦合研究的某些进展.青岛海洋大学学报,2000,30(1):115-122
    [155] 张志南,田胜艳.异养细菌在海洋生态系统中的作用.青岛海洋大学学报,2003,33(3):375-383
    [156] 翟雪梅,张志南.虾池生态系统能流结构分析.青岛海洋大学学报,1998,26(2):275-282
    [157] 赵保仁.黄海冷水团锋面与潮混合.海洋与湖沼,1985,16(6):452-460
    [158] 赵一阳,何丽娟,陈毓蔚.论黄海沉积物元素区域分布格局.海洋科学,1989,1:1-5
    [159] 郑天凌,王斐,徐美珠等.台湾海峡海域细菌产量、生物量及其在微食物环中的作用.海洋与湖沼,2002,33(4):415-423
    [160] 中国科学院南沙综合科学考察队.南沙群岛海域的同位素海洋化学.北京:海洋出版社,1996
    [161] 中国气象局国家气象中心(NMC).中国内海及毗邻海域海洋气候图集.北京:气象出版社,1995
    [162] 周旭波,孙文心,苏健.东中国海潮余流自适应数值模拟.青岛海洋大学学报,2002,32(2):173-178
    [163] 朱兰部,赵保仁.渤、黄、东海透明度的分布与变化.海洋湖沼通报,1991,3:1-10
    [164] 朱明远,毛兴华,吕瑞华等.黄海海区的叶绿素a和初级生产力.黄渤海海洋,1993,11(3):38-51
    [165] 邹娥梅,熊学军,郭炳火等.黄、东海温盐跃层的分布特征及其季节变化.黄渤海海洋,2001.19(3):9-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700