用户名: 密码: 验证码:
PA66/GF汽车进气歧管成型工艺及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在节能和环保日益受到重视的今天,轻量化成为汽车的重要发展方向,而汽车零部件的塑料化正是达到轻量化目的的主要措施之一。本文的主要研究内容就是围绕汽车发动机的重要部件——进气歧管的塑料化展开,由于汽车进气歧管体积较大、形状复杂、成型质量要求高,因此其注塑成型难度较大、工艺复杂、对成型工艺参数的要求较高。
    本文利用数值模拟方法、结合正交设计及单因素轮换的试验设计与优化理论,对塑料进气歧管“熔模型芯法”注塑成型工艺过程进行数值模拟仿真研究,从而实现对注塑成型工艺参数的优化,为产品的工艺开发和模具设计提供依据。
    本文在对当今汽车轻量化、零部件塑料化以及的汽车进气歧管塑料化的发展现状和发展趋势进行了研究和简要介绍,然后在高分子材料成型过程中的理论模型和数值计算方法的指导下,展开主要的研究工作:
    首先,在零件三维模型和有限元网格模型的基础上,使用Moldflow 的MPA模块对塑料进气歧管的多个浇注系统设计方案进行数值模拟,通过分析各个方案的充填质量、熔接线位置及数量等指标,得到了综合质量较高的4 个进料口的浇口位置及半限制型浇口大小的浇注系统。
    然后,对塑料进气歧管的注塑工艺过程和保压冷却工艺过程分别进行正交试验设计安排,得到两个3 因素(即注塑过程的熔体温度、注射时间、模具温度三个因素;保压冷却过程的保压压力、保压时间、冷却时间三个因素)、3 水平的正交试验表;依据正交表的试验方案,本文分别对零件的注塑工艺过程、保压冷却工艺过程进行了数值模拟;再通过综合平衡法对模拟试验结果进行多目标(多质量指标)分析和研究,得到综合最优的注塑工艺参数和保压冷却工艺参数。
    其后,本文还以上述正交试验得到的最优工艺参数组合为基准,采用单因素轮换法,即对单个工艺参数进行轮换变动,利用数值模拟方法研究各工艺参数对收缩翘曲、熔接线和增强纤维的分布取向等重要质量指标的影响,进一步论证了正交试验方法所得到的工艺参数组合使塑料进气歧管的综合质量最佳。
    最后,在上述数值模拟和优化工作的基础上,得到了优化的汽车进气歧管“熔模型芯法”注塑成型工艺参数综合。
Energy-conservation and environmental protection are drawing more people’s attention and weight reduction becomes important development trend of the automobile industry. Using more plastics parts on automobiles is one of effective measures to achieve the purpose of weight reduction. This study is about the intake manifold made of plastics, which is important part round the automobile engine. Because of the big volume, complicated shape and requirement of high quality, the injection process of intake manifold is difficult and complicated and the technical parameters are strict. So it is necessary and important to research the injection process of the intake manifold.
    Using numerical simulation technology and method of orthogonal experiment design and single factor rotating optimization, this thesis makes a study of "lost core injection ", thus achieve the optimization of the parameters of molding process, to offer basic reference when developing production technology and mould of the plastics intake manifold.
    Based on the study of the status in quo and development trend of weight reduction on automobile, the application of plastics to automobile and intake manifold, then under the guidance of theory model and numerical simulation technology in the process of high polymer material, this thesis launches flowing main research work:
    First of all, on the basis of the three-dimensional model of the part and finite element net model, several designs of gating and running system are numerically simulated and analyzed via MPA of Moldflow. Through analyzing the index of filling quality, welding lines position and quantity etc. of each design scheme, we get the optimal gating and running system, which has 4 gates and half restriction running system.
    Then, by means of orthogonal experimental design, two orthogonal tables are got, one of which is about filling processing and has 3 levels and 3 factors (melt temperature, fill time and mold temperature), another one of which is about hold & cooling processing and has 3 levels and 3 factors too (hold pressure, hold time, cooling time). According to the two orthogonal tables, the processing of filling and hold & cooling are separately numerical simulated via MPI of Moldflow. And then through synthetically analyzing simulation results for much goals (much quality indexes), this thesis gets optimal parameters of the processing of filling and hold & cooling.
    Thereafter based on above optimal parameters craft parameter, we adopt the method of single factor rotating, namely changing each single parameter by turns, and utilize numerical simulation technology to study the influence of each parameter to shrink warping, welding lines and orientation of glass fiber, which are all the important quality targets. Finally, according to above-mentioned study mainly by numerical simulation and analysis, this thesis achieves the optimizing of “lost core injection”process of automobile plastics intake manifold.
引文
[1] 牛序谋. 去年全球产车6461.6 万辆. 中国汽车报,2005 年2 月21 日
    [2] 燕战秋,华润兰. 论汽车轻量化. 汽车工程,1994(6):375~383
    [3] Yuki Kurhara,hiroshi Kondo,Mikiya Komatsu,Akio Chba. Trends in Automobile Weight Reduction Technologies. Nissan Engineering Journal,1991(6)
    [4] 周达飞,吴张永,王蟀兰. 汽车用塑料—塑料在汽车中的应用,化学工业出版社,北京:2003
    [5] 敖炳秋. 轻量化汽车材料技术的最新动态. 汽车工艺与材料,2002(8):1~21
    [6] 金国珍. 工程塑料. 化学工业出版社,北京:2001
    [7] 姚建军. 塑料材料在汽车制造工业中的应用. 汽车运用,2003(9):23~25
    [8] 张师军,王小兰. 在汽车工业领域的应用. 中国石化,2004(9):53~57
    [9] 邓如生等. 聚酰胺树脂及其应用. 化学工业出版社. 2002 年12 月
    [10] 魏运方,陈百军. 聚酰胺工程塑料的发展趋势. 国际化工信息. 2001 年9 月
    [11] 周莺. 聚酰胺工程塑料发展现状. 化学工业与工程技术. 2000 年第21 卷第4 期
    [12] 许红摘译自《工业材料》(日本). 汽车发动机周围零部件的树脂化. 化工新型材料1997 年第10 期
    [13] D.菲恩费尔特等著. 徐定宇,夏廷文译. 注射模塑技术. 轻工业出版社. 北京. 1990.6:136~167
    [14] 广惠章利,本吉正信著. 李美云,张翼纯译. 塑料成型加工技术. 中国计量出版社. 北京. 1989.12:125~180
    [15] Bernhardt E C. CAE for injection Molding, New York: Hanser Publishers, 1983
    [16] Hieber C A, Shen S F, A finite-element/finite-difference simulation of injection-molding filling process. J.Non-Newt.Fluid. Mech. ,1980(7)
    [17] Wang V W, Hieber C A, Shen S F., Dynamic simulation and graphics for the injection-molding of three-dimensional thin parts, Polym. Eng., 1986(7)
    [18] 吴其桦,巫静安. 高分子材料流变学. 北京:高等教育出版社. 2002.10:255~268
    [19] 申长雨等,塑料模具计算机辅助工程,郑州:河南科学技术出版社,1998
    [20] 《现代模具技术》编委会,现代模具技术,北京,国防工业出版社,1996
    [21] Agassant, J.F.,et al.,Polymer Processing: Principles and Modeling, Hanser Publishers, Munich,1991,33
    [22] Kennedy, Peter, Flow Analysis of Injection Molds, Hanser Publishers, Munich, 1995,13-24
    [23] Rubin, Irvin, Injection Molding: Theory and Practice, John Wiley & Sons, New York, 1972, p.213,226,232
    [24] 唐志玉,塑料模具计算机辅助设计,北京,机械工业出版社,1998
    [25] 刘春太等,注塑模充模过程的数值分析,力学与实践,1998,20(2):14-1-19
    [26] 申长雨等,CAE 技术在注射模浇注系统设计的应用,模具工业,2000,8:1-3
    [27] Brydson, J, Flow Properties of Polymer Melts, Iliffe Books, London, 1970
    [28] Chiang H H, Hieber C A, and Wang K K. A Unified Simulation of the Filling and Post-filling Stages in Injection Molding, Part I,Polym. Eng. Sci, 1991,31-116
    [29] Florin Ilinca, Jean-Francois Hetu,3D Simulation of the Packing-cooling stage in Polymer injection molding ANTTEC,2000,SPE conference 2000:718
    [30] 张佑生,塑料模具计算机辅助设计,北京,机械工业出版社,1998
    [31] 申长雨等,塑料注射成型保压过程数学描述,中国塑料,1999.12(5):92-94
    [32] 申长雨等,塑料模具CAE 技术概况及发展趋势,工程塑料应用,2000,28(5):40-42
    [33] M.Lin, M.J. Murphy, Optimal cooling system design for the injection molding process. Polym. Eng. Sci., 1998,38(9):1450-1462
    [34] L.Q.Tang, K.Pochirajn, et al, Acomputer-aided optimization approach for the design of injection molding cooling system. J, Mechanical Design, Tranaction of ASME, 1998,120:165-174
    [35] Rong-Yeu Chang and Shin-Hui Huang, A novel computer simulation technology for the cooling analysis of complex injection molded parts, ANTEC’2000,SPE conference 2000:449
    [36] Natti S. Rao, Guenter Schumacher, Nick R. Schott, Keith T. O’Brien, Optimization of cooling systems in injection molds by an easily applicable analytical model, ANTEC’2000, SPE conference 2000:702
    [37] R. Morales, S. Villaroel, H. Andrade, Experimental validation of a mold filling/cooling software, ANTEC’2001, SPE conference 2001:560
    [38] 李人宪. 有限元法基础. 北京: 国防工业出版社, 2002.5
    [39] 中国模具设计大典编委会,中国模具设计大典,南昌:江西科学技术出版社,2003.1,149-357
    [40] 杨德. 试验设计及分析. 北京: 农业出版社, 2002.12
    [41] 李波,徐泽民等. 试验设计与优化. 2002.3
    [42] 虞鸿祉,杨玉等,工业试验设计技术,南京:东南大学出版社,1991.1
    [43] 郑生荣,辛勇等,注塑参数优化研究方法,中国塑料,2003,17(4):1-7
    [44] 王德翔,刘来英等,基于人工神经网络技术的注塑成型工艺参数优化,模具技术,2001,(6):1-4
    [45] 朱立,黄国立等,基于遗传算法的注塑工艺优化设计,机械设计与制造工程,2001,30 (1):13
    [46] B.H.Lee, B.H.Kim. Variation of part wall thicknesses to reduce warpage of injection-molded art : robust design against process wariability. Polymer-plastics technology engineering, 1997,36(5):791
    [47] 汤宏群,苏广才. Moldflow 在注塑成型中的应用,广西大学学报,2003,28:62-63
    [48] 余卫东,陈建. Moldflow 技术在注塑成型过程中的应用. 软件世界,2001.6
    [49] 郭广思. 注塑成型技术. 北京:机械工业出版社,2002.9:220-259
    [50] 陈泽人. CAD/CAM/CAE 在塑料模具设计和制造中的应用. 北京:中国标准出版社
    [51] Moldflow/MPI4.0
    [52] Georg Menges,Walter Michaeli,Paul Mohren 著.注塑模具制造工程.化学工业出版社.2003 年
    [53] 赵建华,吴春艳,彭晓东. PA66/GF 汽车进气歧管工艺模拟及优化. 工程塑料应用,2005,(2):23-27
    [54] J.B.戴姆著,注射模具与注射成型实用手册,北京:化学工业出版社,1987.10
    [55] 北京市塑料工业公司编,塑料成型工艺,北京:中国轻工业出版社,1993.5
    [56] 张治华. 塑料收缩性. 北京:中国石化出版社,1999
    [57] 艾方. 塑料收缩率和模具尺寸. 模具技术,1995,(3):79-90
    [58] 俞汝惠. 稳定注射件尺寸的一些措施. 模具工业,1989,(6):45-47
    [59] 申长雨,陈静波,刘春太等. 注塑成型制品的质量控制. 工程塑料应用,1998.8
    [60] 林兰芬. 短纤维增强塑料注射成型中三维纤维取向的数值预测. 材料科学与工艺. 1998.6(2)
    [61] 林兰芬,马择恩等. 注射成型中充填流动对短纤维取向影响的研究. 西北工业大学学报,1997,15(2)
    [62] 郭建娟,晏石林. 纤维取向分析数学模型,武汉理工大学学报,2001,23(1):56-59
    [63] K.Yomari, S.Tonogai, T.Harada, H.Hamada, K.Lee. V-motch at weld lines in polystyrene jnjection moldings, Polymer Engreering and Science, 1991,30(15):931-936
    [64] D.Fmielewski, D.R..Barer, P.J.Schmitz, H.Van Oene, Weld line morphology of injection molded polypropylene,
    [65] A.Meddad, B.Fisa, Weldline strength in glass fiber reinforced polyamide 66, Polymer Engreering and Science, 1995,35(11):893-901
    [66] B.Fisa, M.Rahmani, Weldline strength in the injection molded glassfiber-reinforced polypropylene. Polymer Engreering and Science, 1991,31(18):1330-1336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700