用户名: 密码: 验证码:
长江口海域表层水温变化的气候特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用:(1)长江口引水船海洋站1959年9月~2001年10月月平均表层水温(SST)资料(共42年),1998年1月1日~12月31日日平均SST资料(1年),(2)大戢山海洋站1977年10月~2000年4月月平均SST资料(共22年),1998年1月1日~12月31日日平均SST资料(1年),(3)安徽大通水文站1968年1月~1999年12月(32年)月平均径流量资料,(4)1959年~2001年(43年)美国NCEP-NCAR再分析月平均大气环流资料,分析了长江口区表层水温变化的气候特征。对长江口SST的日变化、季节变化、年际变化、年代际突变都进行了分析;主要讨论了对长江口SST季节和年际变化有影响的重要因子:东亚季风(包括冬季风和夏季风)和长江径流对长江口海域SST的影响。通过对长江口SST变化规律的研究,对长江口海域SST的短期、中期、长期预报及长江口的赤潮预报和渔业生产,都有一定的实用价值和指导意义,对长江口SST变化的气候预测提供可靠的依据。
     1 首先分析了长江口SST的日变化。在一年四个季节中,引水船春季日较差最大,最大日较差达4.7℃。大戢山站初夏和初冬日较差最大,最大日较差达2.5℃。长江口SST日变化比相同水深的外海海域变化显著。普查历史天气图,发现日较差大的天数,控制长江口的天气系统为高压中心,说明太阳辐射是长江口SST日变化的主要原因,长江口层结稳定、长江冲淡水的流经亦是其日变化大的原因。
     2 分析了长江口SST的季节变化,一年中长江口SST最高值出现在8月份,最低值出现在2月份。春、秋季为过渡季节,春季(3~5月)为水温上升季节,秋季(9~11月)为水温下降季节。从方差分布看,与平均值最大出现在夏季8月不同,方差最大值出现在冬季(12~2月),SST年际变化呈现出季节差异,冬季SST年际变化比夏季大。引水船最大方差出现在1月份,而大戢山最大方差出现在12月份,说明引水船1月份水温变化幅度最大,大戢山12月份水温变化幅度最大。引水船方差变化范围在0.43~1.65之间,大戢山方差变化范围在0.26~1.45之间。引水船方差变化范围比大戢山大,这是因为引水船受陆地气候影响较大。太阳辐射及东亚季风、长江径流是影响长江口海域SST季节变化的主要因子。
     3 通过功率谱分析,发现长江口SST的年际变化的主要周期是准两年和3~5年,这与不少学者对中国海的研究基本一致。
     4 长江口SST的年代际变化可分为两个时期,20世纪60年代到80年代中后期,长江口SST多数年份是负距平,为相对冷期。80年代末以后,长江口SST多数年份是正距平,属暖期。长江口SST经历由冷到暖的变化过程,70年代最低,多为“冷水”年,90年代多为“暖水”年。用Mann-Kendall非参数统计检验方
Based on the monthly average SST data for 42 years (1959.9~2001.10) and thedaily average SST data for one year (1998.1.1~ 1998.12.31) at Yin-shuichuan oceanstation in the Changjiang estuary, the monthly average SST data for 23 years(1977.10 ~ 2000.4) and the daily average SST data for one year (1998.1.1 ~1998.12.31) at Da-jishan ocean station in the Changjiang estuary , the monthlyaverage Changjiang runoff discharge data for 32 years(1968.1 ~ 1999.12) at Da-tonghydrological station in AnHui Province, the monthly average reanalysis data ongeneral circulation from the NCEP/NCAR for 43 years(1959~2001),it is analyzedthe climate characteristics of the SST variation in the Changjiang estuary. It isstudied the daily、 monthly 、seasonal、 interannual and decadal years SST variation inthe Changjiang estuary. It is mainly discussed the important factors that effect theseasonal and interannual SST variation in the Changjiang estuary : it includes theaffect of the East-Asia monsoon and the Changjiang runoff to the SST variation.The studies on SST variation provide reliable evidence for short、 medium、 long termforecast and climatic prediction of SST in the Changjiang estuary ,it also benefits thefish production in the Changjiang estuary.1 Firstly it is analyzed the daily SST variation in the Changjiang estuary. Among four seasons the most daily SST deficit appears in spring at Yin-shuichuan station with 4.7℃ and in early summer and early autumn at Da-jishan station with 2.5℃ .By the weather chart, it is found that the Changjiang estuary is controlled by the center of high pressure on the most max daily SST deficit day. The Sun radiation is the main factor of SST daily variation.2 The seasonal SST variation in the Changjiang estuary is studied .The highest SST appears in August and the lowest SST in February among a year. Spring and Autumn are transition seasons in a year. In Spring the SST rises from March to May. In Autumn the SST declines from September to November. The biggest distribution of SST variance is in winter with being in January at Yin-shuichuan station and in December at Da-jishan station. The Sun radiation 、 the East Asia monsoon and changjiang run-off are the main affecting factors.3 By power spectrum analysis, it is showed that there are about 2-year and 3~ 5 year oscillations for SST annual variation in the Changjiang estuary. This conclusion corresponds with the results of China sea SST that many researchers have
    discovered.4 The interdecade variation is divided into two periods: from 60s to the end of 80s of 20 century, SST was relatively "cold times" that in most of years SSTA(SST anomaly) are negative , from the end of 80s of 20 century to the early 21-century, SST was relatively "warm times" that in most of years SSTA(SST anomaly) is positive. The SST variation become warmer, the SST was lowest in 70s in the last century, and most of years are "cold -water" year. The SST was the highest in 90s in the last century and most of years are "warm -water" year. The abrupt change year for SST took place in 1989.5 By the compose analysis , it is studied the East-Asian monsoon influence to the SST annual variation in the Changjiang estuary. According to the analysis of 500hPa heights 850hPa wind velocity and sea surface pressure, it is showed that in winter the strong winter monsoon year is corresponded with cold water year and weak monsoon year is corresponded with warm water year for SST in the Changjiang estuary. In summer when the year is strong summer monsoon year, the SST is abnormally higher. When the year is weak summer monsoon year, the SST is abnormally lower.6 Based on correlation analysis, it is studied that the Changjiang run-off effects the seasonal and annual SST variation in the Changjiang estuary. The direct influence of Changjiang run-off to the SST seasonal variation appears in March and April in dry season. In flash season the Changjiang run-off has indirect influence to the SST of the Changjiang estuary after one^ two^ three month. The Changjiang run-off discharge have 6.9a ^ 3.5a and 1.5a oscillations . The Changjiang run-off also effects the annual SST variation: when the yearly-mean run-off discharge is bigger, the SST in the Changjiang estuary is higher. Others the SST is lower.
引文
[1] 东海海洋编辑部.长江河口及其邻近海区概况。东海海洋,1995,13 (3-4):8-14
    [2] 中国科学院《中国自然地理》编委会.中国自然地理-海洋地理.北京:科学出版社,1979.1-224
    [3] 孙湘平等.中国沿岸海洋水文气象概况.北京:科学出版社,1981.
    [4] Su, j., 1998.circulationdynamics of the china sea north of 18 N. in: Robinson, A.R., brink, K.H.(Eds), The Sea, Vol. 11 Willey, New York, pp. 483-505.
    [5] Maohan-li .A note on circulation of the east CHINA sea, "China-Japan Ocean study symposim " meeting held on Oct, 28-29, 1981, at Shimizu, Japan
    [6] 苏育嵩.黄、东海地理环境与后来环流系统分析.青岛海洋大学学报,1989,1(Ⅱ):151-152
    [7] 朱建荣,沈焕庭.长江冲淡水扩展机制.上海:华东师范大学出版社,1997.8
    [8] 毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963,5(3):183-206
    [9] 乐肯堂.长江冲淡水路径的初步研究,Ⅰ.模式.海洋与湖沼,1984,15(2):157-167
    [10] 崔茂常.长江冲淡水转向研究.海洋与湖沼,1984,15(3):222-229
    [11] 顾玉荷.长江冲淡水原因的探讨.海洋与湖沼,1985,16(5):354-363
    [12] 赵保仁.长江冲淡水的转向机制问题.海洋学报,1991,13(5):600-610
    [13] 朱建荣,肖成猷.黄海冷水团对长江冲淡水扩展的影响.海洋与湖沼,1998,29(4):389-394
    [14] 廖启煜,郭炳火,刘赞沛.夏季长江冲淡水转向机制分析.黄渤海海洋,2001,19(3):19-25
    [15] 匡国瑞等.长江口及济州岛邻近海域的综合调查.山东海洋学院学报,1986,16(1):30-73
    [16] Chu P. C. and Charles R. F. 1997. A Parametric Methed for the Yellow Sea Thermal Variability. J. G. R. 102 (C5), 10499-10507
    [17] 林学椿,于淑秋,唐国利.中国近百年温度序列.大气科学,1995,19(5):525-531
    [18] 施能,陈家其,屠其璞.中国近百年来4个年代际的气候变化特征.气象学报,1995,53(4):431-439
    [19] 王绍武.近百年全球气候变暖的分析.大气科学,1995,19(5)
    [20] 王绍武.近百年气候变化与变率的诊断研究.气象学报,1994,52(3):261-273
    [21] 于淑秋,林学椿.北太平洋海温的气候跃度及其对中国汛期降水的影响.热带气象学报,1997,13(3):265-275
    [22] 朱亚芬 钱维宏.全球海温异常的年代际变化.海洋预报,1998,15(4):1-7
    [23] 李峰,何金海.太平洋区域海温跃变及其与东亚季风的关系.气象科学,2000,21(1):28-35
    [24] 中华人民共和国科学技术委员会海洋组综合调查办公室编.全国海洋调查报告,第二册,中国近海温、盐、密度的分布,1964
    [25] 毛汉礼.南黄海和东海北部(28°~37°N)夏季的水文特征以及海水类型(水系)的初步分 析.北京:学苑出版社,1991,147~202.
    [26] 周发琇,黄海陆架表层水温的低频振动.山东海洋学报,1987,17 (4):22-27
    [27] 周发琇,南海表层水温的低频振荡.海洋学报,1991,13 (3):334-338
    [28] 杜碧兰,东海及外缘海域表层海水温度的谱分析.海洋预报服务,1984,1 (1):1-7
    [29] 金子郁雄,江口一平.东海海面水温经年变动-6年2年周期性[J].海空,1987,63 (3):15-25
    [30] 阎俊岳.东海及邻近地区百年来的温度变化.海洋学报.1997,19 (6):121-126
    [31] 汤明义.东海黑潮途经岛屿测站表面海温年变化及年际变化特征.海洋学报,1994,16 (3):12-20
    [32] 魏风英.现代气候统计诊断与预测技术.北京:气象出版社,1999.9.69-70.77-78
    [33] 黄嘉佑.气象统计分析与预报方法.北京:气象出版社,2000.5~6,222-233,8-9
    [34] WCRP, CLVAR - A Study on Climate Variability and Predictability Science Plan, WCRP No.89, WMO/TD No.690,Geneva, 1995
    [35] 王绍武.现代气候学研究进展.北京:气象出版社,2001.51-60
    [36] 陈隆勋.东亚季风系统的结构及其中期变动.海洋学报.1984,6:744~758
    [37] 朱乾根,等.夏季亚洲季风槽的断裂过程及其结构特征.热带气象.1987,3:1~8
    [38] 黄士松,等.论东亚季风体系的结构.气象科学.1987,7:1~16
    [39] Tao Shiyan, et al. A review of recent research on the East Asian summer monsoon in China.Review of Monsoon Meteorogy. UK:Oxford University Press, 1987.353pp
    [40] Ding Yihui.Monsoons over China.Atmospheric Sciences Library.Holland:Kluwer Academic Publishers, 1994, 1~87, 174~240
    [41] Zhu Qiangen, et al. A study of circulation differences between East-Asian and Indian summer monsoon with their interaction.Adv Atmos Sci, 1986, 3: 466~477
    [42] 何金海.亚洲季风圈剖面内准40天周期振荡的环流结构及其演变.热带气象,1988,4:116~125
    [43] 丁一汇,等.北半球夏季全球热带和副热带200hPa平均辐散场的研究.气象学报,1987,45 (1):120~127
    [44] 金祖辉,等.夏季东亚季风环流系统的中期变化及印度季风系统的相互关系.见:全国热带夏季风学术会议论文集.昆明:云南人民出版社,1982,204~215
    [45] 伍荣生等.现代天气学原理.北京:高等教育出版社,1999.211-212.
    [46] 孙柏民,孙淑清.冻亚冬季风异常及其影响的统计研究[A].何金海主编,亚洲季风研究的新进展中机制合作研究论文集[C].北京:气象出版社.1996.108-114.
    [47] 陈海山,孙照渤.一个反映中国冬季气温异常的指标东亚区域西风指数.南京气象学院学报,2001,24(4):458-469
    [48] 郭其蕴.东亚季风强度指数及变化的分析.地理学报,1983,38(3):207~217
    [49] 郭其蕴,东亚冬季风的变化与中国气温异常的关系,应用气象学报,1994,5(2):218-224
    [50] 施能,朱乾根.1873~1996年东亚冬、夏季风强度指数及其主要特征.南京气象学院学报,1998,21(2):208-214
    [51] 林学椿.热带气象,1991,7(4):348-354
    [52] 施能,朱乾根,吴彬贵.近40年东亚夏季风及我国夏季大尺度天气气候异常.大气科学.1996.20(5):575~583
    [53] 王斌,樊真.论南压夏季风指数的选择.东亚季风和中国暴雨—庆贺陶诗言院士80华诞,中国科学院大气物理研究所编,北京:气象出版社,1998,170~183
    [54] Wu Aiming and Ni Yunqi,The influence of Tibetan Plateau on the interannual variability of Asian monsoon. Adv. Atmos. Sci. 1997, 14(4): 491~504
    [55] 乔云亭,陈烈庭,等.东亚季风指数的定义及其与中国气候的关系.大气科学.2002,26(1):69~80
    [56] 张庆云,陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报.1998,9(增刊):16~23
    [57] 周兵,何金海,吴国雄,等.东亚副热带季风特征及其指数的建立.大气科学.2003,27 (1):123~134
    [58] 孙秀荣.东亚海陆热力差指数及其与环流和降水的年际变化关系,气象学报,2002,69 (2):164-172
    [59] 沈焕庭,杨清书.长江河口径流与盐度的谱分析,海洋学报,2000,22 (4):17~23
    [60] 沈焕庭,茅志昌,朱建荣.长江河口盐水入侵.北京:海洋出版社,2003.105
    [61] 胡基福.气象统计原理和方法.山东青岛:青岛海洋大学出版社,1996.22-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700