用户名: 密码: 验证码:
添加剂及底膜对溶胶—凝胶法制备ZrO_2超滤膜的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以解决溶胶—凝胶法路线制备陶瓷超滤膜关键技术为背景,针对溶胶—凝胶法制备氧化锆超滤膜这一具体的制备过程,开展有关研究工作,以期为实现陶瓷超滤膜的工业化提供必要的技术基础。
     稳定的制膜液是制备出完整、无缺陷溶胶膜的首要条件。本文采用以无机锆盐(Zr(NO_3)_4·5H_2O)为前驱体制备的稳定锆溶胶为原料,详细研究了增稠剂和干燥控制剂的种类及加入量对制膜液稳定性的影响,并进一步考察了制膜液的稳定性对成膜过程的影响,同时考察了晶型稳定剂对成膜过程的影响。结果表明,在本文所采用的锆溶胶体系中,以PVA为增稠剂、丙三醇等中性物质为干燥控制剂最为合适;研究发现,通过控制PVA的加入量在2~3%,可以防止内渗透且获得较为完整的溶胶膜层,添加中性干燥控制剂能够有效地防止膜层开裂;在溶胶中引入晶型稳定剂硝酸钇(Y:Zr=0.08:0.92),可以防止氧化锆由于晶型的转变而可能导致的膜层开裂和缺陷。
     底膜对溶胶—凝胶成膜过程的影响十分显著。本文从底膜的微结构和材料性质两方面入手,分析底膜微结构对所形成膜的微结构的影响以及底膜与膜之间的材料性质匹配问题,从而确定适合的底膜条件。采用EDX分析制膜液在不同孔径底膜下的内渗透行为,结果表明,底膜孔径越小,越能防止溶胶的内渗透现象且越易在底膜表面形成膜层;提出通过在相同功率超声相同时间下,膜层质量损失率来表征膜层与底膜材质间性质匹配问题,结果表明,在ZrO_2底膜上所形成的溶胶膜层质量损失率最小;但是在平均孔径为0.2μm的ZrO_2、Al_2O_3、TiO_2三种材质底膜上浸浆涂膜5次后,大孔缺陷问题依然存在。
     针对溶胶—凝胶法制备陶瓷超滤膜制膜工艺控制参数优化问题,对浸浆时间,干燥条件和烧结制度等工艺参数进行系统的优化研究。结果表明一次涂膜后膜厚与浸浆时间的平方根成正比,浸浆时间控制在60s左右较为合适;随着涂膜次数的增加,膜厚有所增加且增加的趋势逐渐变缓,最后膜厚趋于一定。涂膜5次以后(600℃下烧结2小时),膜层基本达到完整,纯水通量大约为100 L·m~(-2)·h~(-1),对500000D和70000D葡聚糖截留率分别为80%和20%;干燥过程中增加湿度有效防止了膜层的开裂现象;孔径随着烧结温度的升高而增大,从而导致截留性能的下降;采用压汞仪表征氧化锆超滤膜的孔径分布,其最可几孔径在40~50nm;采用SEM表征氧化锆超滤膜的微观形貌,膜的表面较为完整光滑,顶层氧化锆溶胶膜厚度约为1μm。
With the solution to the crucial technique in the preparation of ceramic ultrafiltration membrane by means of Sol-Gel method as the groud work, this paper studies the concrete preparation of zirconia ultrafiltration membrane so as to provide necessary technique foundations for the realization of the industrialization of ceramic ultrafiltration membrane.Suspension stability is the primary factor to prepare integrated membrane without defect. With stable zirconium sol prepared by Zr(NO_3)_4·5H_2O as raw materials, this paper studies in details the effects of the types and doses of organic binders and Drying Control Chemical Additives (DCCA) upon the stability of the suspension. Meanwhile, the effect of stability of suspension and crystal phase stabilizer upon the process of membrane is explored as well. It shows that PVA and neutral DCCA such as glycerol are most suitable for zirconium sol system selected in this paper. It also indicates that sol is not absorbed by the support and the surface of membrane is homogeneous throughout by controlling the amount of PVA with 2~3%. Membrane is crack-free by adding neutral DCCA. Yttrium nitrate(Y:Zr=0.08:0.92) could avoid membrane defect caused by crystal phase transformation.Substrate has a distinct effect on membrane preparation by Sol-Gel method. In this paper, the effect of substrate micro-structure on membrane micro-structure and material property matching problem between substrate and membrane are discussed at length in order to choose suitable substrate for suspension. EDX analysis is introduced to observe suspension absorbed into substrates with different pore diameter. It shows that the smaller the substrate pore diameter, the easier the fact that membrane could form on it. Membrane mass loss rate under the same ultrasound power and ultrasound time is raised to represent material property matching problem. It shows membrane mass loss rate is the least on zirconia substrate. However, after dip-coating for 5 times on three different substrates, large pore size defects still exists.Influences of the dip-coating time, dry conditions and sintering program are investigated systemically. It is found the thickness of the top layer increases linearly with the square root of the dip-coating time after coating for 1 time. It is suitable to control dip-coating time at 60s. With the increase of coating frequency, membrane thickness also increases and then goes to a constant gradually. After coats for 5 times (600℃ for 2h), membrane almost reaches intergrity. Pure water flux is about 100 L·m~(-2)·h~(-1) and rejection rate of 500000D dextran and 70000D dextran are 80% and 20% respectively. Membrane
    crack is avoided effectively by introducing humidity during dry process. Pore diameter increases with the increase of the sintering temperature , which leads to a decrease in rejection rate. Pore diameter distribution is measured between 40nm and 50nm by mercury porosimetry. Surface and cross-sectional SEM of zirconia ultrafiltration membrane show that membrane surface is smooth and the top membrane thickness is about lum.
引文
[1] 徐南平,高从增,时钧.我国膜领域的重大需求与关键问题[J].中国有色金属学报.2004,14(1):327-331.
    [2] 孟广耀,彭定坤.无机膜——新的工业革命[J].自然杂志.1996,18(3):151-156.
    [3] 程淑英,龚莉莉.膜分离技术应用现状与展望[J].化工技术经济.1999,17(2):15-18.
    [4] 徐南平.无机膜的发展现状与展望[J].化工进展.2000,4:5-9.
    [5] 邓仕燕.氧化锆陶瓷超滤膜制备的相关基础研究[D].南京:南京工业大学,2002.
    [6] 余桂郁,杨南如,陶洪亮.Sol-Gel工艺制备无支撑γ-Al_2O_3复合膜[J].硅酸盐通报.1994.1:26-29.
    [7] Julbe A, Guizard C, Larbot A, Cot L. Sol-gel approach prepare candidate microporous inorganic membranes for membrane reactors[J]. J. Membr. Sci. 1993, 77: 137-153.
    [8] Hackley, Vincent A, Anderson, Marc A. Synthesis and characterization of unsupported ferric oxide ceramic membranes[J]. J. Membr. Sci. 1992, 70: 41-51.
    [9] Etienne J, Larbot A, Julbe A, Guizard C, Cot L. Microporous zirconia membrane prepared by the sol-gel process from zirconyl oxatate[J]. J. Membr. Sci. 1994, 86: 95-102.
    [10] Tadanage K, Katata N, Minami T. Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method[J]. J. Am. Ceram. Soc. 1997, 80(12): 3213-3216.
    [11] Conesa A, Fermamdez Roura A, et al. Separation of binary gas mixtures by means of sol-gel modified ceramic membranes. Prediction of membrane performance[J]. J. Membr. Sci. 1999, 55: 123-131.
    [12] Ohya Y, Salike H, Tanaka T et al. Microstructure of TiO_2 and ZnO films fabricated by the sol-gel method[J]. J. Am. Ceram. Soc. 1996, 79(4): 825-830.
    [13] Sakamota W, Yogo T, Kikuta K, et al. Synthesis of lead barium niobate powders and thin films by the sol-gel method[J]. J. Am. Ceram. Soc. 1996, 79(4): 889-894.
    [14] Klein L C, Yu C, Woodman R, et al. Microporous oxides by the sol-gel process synthesis and applicaton[J]. Catalysis Today. 1992, 14: 165-173.
    [15] Okubo T, Nagamoto H. Low-temperature preparation of nanostructured zirconia and YSZ by sol-gel processing[J]. J. Mater. Sci. 1995, 30: 749-757.
    [16] Yazawa T, Tanaka H, Nakamichi H, Yokoyama T. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method[J]. J. Membr. Sci. 1991, 60: 307-317.
    [17] Cot L, Guizard C, Labort A. Novel ceramic material for liquid separation process: Present and prospective applications in microfiltration and ultrafiltration[J]. Industrial Ceramics. 1988, 8(3): 143-148.
    [18] Larbot A, Fabre J P, Guizard C, et al. New inorganic ultrafiltration membranes: titania and zirconia membranes[J]. J. Amer. Ceram. Soc, 1989, 72: 257-261.
    [19] Peng D K, Yang P H, Wan C H, Chen C S. Synthesis of yttria-stabilized zirconia membrane by controlled hydrolysis route[J]. 中国科学技术大学学报.1998,28(3):305-309
    [20] 夏长荣,高建峰,彭定坤,孟广耀.以无机盐为原料制备钇稳定的氧化锆超滤膜[J].无机材料学报.2001,16(1):188-192.
    [21] 琚行松.氧化锆陶瓷超滤膜制备及相关基础技术研究[D].南京:南京工业大学,2000.
    [22] Hyun S H, Kang B S. Synthesis of nanoparticulate silica composite membranes by the pressurized sol-gel technique[J]. J. Am. Ceram. Soc. 1994, 77(12): 3093-3098.
    [23] Hyun S H, Kang B S. Synthesis of titania composite membranes by the pressurized sol-gel technique[J]. J. Am. Ceram. Soc. 1996, 79(1): 279-282.
    [24] Xu Q Y, Anderson M A. Sol-gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO_2 and ZrO_2 xerogels[J]. J. Am. Ceram. Soc. 1994, 77(7): 1939-1945.
    [25] Xu Q Y, Anderson M A. Sol-gel route to synthesis of microporous ceramic membranes: Thermal stability of TiO_2-ZrO_2 mixed oxides[J]. J. Am. Ceram. Soc. 1993, 76(8): 2093-2097.
    [26] 曾智强,萧小月,桂治轮,李龙土.复合陶瓷薄膜的制备及其分离应用[J].膜科学与技术.1998,2:12-15.
    [27] 徐晓虹,吴建峰,白占良,张英.Sol-Gel法制备Al_2O_3-SiO_2-TiO_2-ZrO_2复合陶瓷膜的研究[J].中国陶瓷.2003,39(6):21-23.
    [28] Liu B S, Cao Y, Deng J F. Catalytic dehydrogenation of ethanol in Ru-modified alumina membrane reactor[J]. Sep. Sci. Technol. 1997, 32(10): 683-1697.
    [29] Klaus J W, Sheh O, et al. Growth of SiO_2 at room temperature with the use of catalyzed sequential half-reaction[J]. Science. 1997, 278: 1934-1936.
    [30] Uhlhon R J R, Keizer K, Burggraaf A J. Gas and surface diffusion in modified γ-alumina systems[J]. J. Memb. Sci. 1989, 46: 225-241.
    [31] Uhlhorn R J R, Huisin't Veld M H B J, Keizer K, et al. High permselectivities of microporous silica-midified γ-alumina membranes[J]. J. Mater. Sci. Lett. 1989, 8: 1135-1138.
    [32] 陈天蛋,陈航榕,汪霖,施剑林.γ-Al_2O_3无机膜热稳定性的研究[J].膜科学与技术.2001,21(6):40-44.
    [33] Okubo T, Takahashi T, Sadakata M and Nagamoto H. Crack-free porous YSZ membrane via controlled synthesis of zirconia sol[J]. J. Membr. Sci. 1996, 118: 151-157.
    [34] Okubo T, Tomohiro et al. Formation mechanism of crack-free porous YSZ membrane[J]. J. Membr. Sci. 1997, 125(2): 311-317.
    [35] 陶洪亮,余桂郁,杨南如.溶胶-凝胶法工艺制备无支撑γ-Al_2O_3分离膜[J].硅酸盐通报.1994,13(1):26-29.
    [36] Huang X R, Meng G L, Huang Z T, et al. Preparation of unsupported alumina membrane by sol-gel techniques[J]. J. Membr. Sci. 1997, 133: 145-150.
    [37] Leenaars A F M, Keizer K, Burggraaf A J. Porous alumina membranes[J]. Chemtech. 1986, 16(9): 560-564.
    [38] 袁文辉,叶振华.氧化铝无机膜的制备[J].华南理工大学学报(自然科学版).1997,10,(25):10.
    [39] Ulrich D R. Sol-Gel processing[J]. Chemtech. 1988, 18(4): 242-249.
    [40] Zarzycki J. Critical stress intensity factors of wet gels[J]. J. Non-Cryst. Solids. 1987, 100: 359-363.
    [41] Kim J, Lin Y S. Sol-Gel synthesis and characterization of yttria stabilized zirconia membranes[J]. J. Membr. Sci. 1998, 139: 75-83.
    [42] 夏长荣,唐哗,杨萍华,孟广耀,彭定坤.PVA修饰的溶胶凝胶法制备γ-Al_2O_3超滤膜[J].材料研究学报.1999,13:279-283.
    [43] Yang W P, Shyu S S, lee E S, et al. Effects of PVA content and calcination temperature on the properties of PVA/boehmite composite film[J]. Materials Chemistry and Physics. 1996, 45(2): 108-113.
    [44] 李月明,周健儿,马光华,顾幸勇,陆佩文.热处理工艺对制备Al_2O_3超滤膜的影响[J].中国陶瓷工业.2002,9(6):21-24.
    [45] 余桂郁,杨南如.溶胶—凝胶法简介,第三讲溶胶—凝胶法工艺过程[J].硅酸盐通报.1993,6:60-66.
    [46] 王剑华,郭玉忠,刘荣佩.溶胶—凝胶法制备SiO_2薄膜的研究[J].材料科学与工艺.1999,7(3):1-5.
    [47] 孙宏伟,谢灼利,郑冲.非对称SiO_2凝胶膜的制备与性能研究[J].北京化工大学 学报.1998,25(1):2-7.
    [48] 甘礼华,张宇星,陈龙武,葛奇.干燥控制化学添加剂在制备硅气凝胶中的应用[J].同济大学学报.2003,31(9):1131-1134.
    [49] 阎继娜,余桂郁,杨南如.溶胶—凝胶法制备TiO_2分离膜的研究[J].硅酸盐通报.1997.3:13-17.
    [50] 樊栓狮,李春华,王金渠.微孔SiO_2陶瓷膜的制备和性能研究[J].石油炼制与化工.1994.25:40-42.
    [51] Keizer K, Burggraaf A J. Porous ceramic materials in membrane applications[J]. Sci of Ceram. 1987, 14: 83-93.
    [52] Leenaars A F M, Keizer K, Burggraaf A J. The preparation and characterization of alumina membranes with ultrafine pores. Part 1. Microstructural investigation on non-supported membranes[J]. J. Mater. Sci. 1984, 19: 1077-1088.
    [53] 纪君美,项寿鹤.复合膜γ-Al_2O_3膜的研制[J].膜科学与技术.1993,13(4):29-33.
    [54] 黄肖容,黄仲涛.溶胶—凝胶法制备不对称氧化铝膜[J].无机材料学报.1998,13(4):534-540.
    [55] 赖炜,李刚,刘杏芹,孟广耀.大孔氧化铝支撑体上细孔膜的制备研究[J].膜科学与技术.2001,21(4):29-33.
    [56] Burggraaf A J. Chapter 8 Fundamentals of membrane top-layer synthesis and processing[M]. Fundamentals of Inorganic Membrane Science and Technology. 1996.
    [57] 闫继娜,金江,刘敏,余桂郁,杨南如.载体对无机膜完整性影响的研究[J].硅酸盐通报.1999,1:62-66.
    [58] Anderson M A, Gieselman M L, Xu Q. Titania and alumina ceramic membranes[J]. J. Membr. Sci. 1988, 39: 243-258.
    [59] Okubo T, Watanabe M, Kusakabe K and Morooda S. Preparation of γ-alumina thin membrane by sol-gel processing and its characterization by gas permeation[J]. J. Mater. Sci. 1990, 25: 4822-4827.
    [60] 黄培.氧化铝陶瓷膜的制备,表征及应用研究[D].南京:南京工业大学,1996.
    [61] Yang C C, Josefowicz J Y, Alexandru L. Deposition of ultrathin fills by a withdrawal method[J]. Thin Solid Films, 1980, 74(1): 117-127.
    [62] Xia C R, Wu F, Meng Z J, et al. Boehmite sol properties and preparation of two-layer alumina membrane by a sol-gel process[J]. J. Membr. Sci. 1996, 116: 9-16
    [63] De Vos R M, Verweij H. Improved performance of silica membranes for gas separation[J]. J. Membr. Sci. 1998, 143(1/2): 37-51.
    [64] 曾庭英,邱勇,杜金环,陈柳生,宋心琦.纳米级微孔SiO_2玻璃球的研制[J].功 能材料.1997,3:275-277.
    [65] Zarzycki J, Prassas M, Phalippou J. Synthesis of glasses from gels: The problem of monolithic gels[J]. J. Mater. Sci. 1982, 71(11): 3371-3379.
    [66] Peng D K, Yang P H, Wan C H, Chen C S, Xia C R, Meng G Y. Synthesis of Yttria-Stabilized Zirconia Membrane by Controlled Hydrolysis Route[J]. 中国科学技术大学学报.1998,28(3):305-309.
    [67] 薛明俊,孙承绪,李雁.用Sol-Gel法制备氧化铝多孔陶瓷的研究[J].中国陶瓷 1999,3:5-8.
    [68] 韦奇,王大伟,张术根.溶胶—凝胶法制备Al_2O_3-SiO_2复合膜的微观结构分析[J].硅酸盐学报.2001,4:329-396.
    [69] 袁文辉,关健郁,叶菊招,叶振华.γ-Al_2O_3陶瓷膜的制备及气体分离特性的研究[J].华南理工大学学报.1999,9:106-111.
    [70] Uhlhorn R J R, Keizer K, Burggraaf A J. Gas transport and separation with ceramic membranes. Part Ⅰ Multilayer diffusion and capillary condensation[J]. J. Membr. Sci. 1992, 66: 259-269.
    [71] 王果庭.胶体稳定性[M].科学出版社,1990.
    [72] Labort A, Fabre J P, Guizard C, Cot L. Inorganic membrane obtained by sol-gel techniques[J]. J. Membrane. Sci. 1988, 39: 203-212.
    [73] Labort A, Julbe A, Guizard C. Cot L. Silica membranes by the sol-gel process[J]. J. Membr. Sci. 1989, 44: 289-303.
    [74] 中国科技大学高分子物理教研室.高聚物的结构与性能[M].1981.
    [75] Han S D, Huang S Y, Campet G, et al. Influence of the pH values of the SOL-GEL state on the properties of SnO_2 powders obtained from a SOL-GEL route[J]. Active and Passive Electronic Components. 1995, 18: 53.
    [76] 扈罗全.ZrO_2陶瓷粉体的制备及其应用现状[J].江苏陶瓷.1999,32(1):7-10.
    [77] Xia C R, Cao H Q, Wang H, et al. Sol-Gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide[J]. J. Membr. Sci. 1999, 162: 181-188.
    [78] 董声华,田燕,杨兰娜.凝胶色谱法测量切割分子量分布表征超滤膜[J].水处理技术.1990,16(4):323-327.
    [79] Tiller F M, Chum-Dar Tsai. Theory of filtration of filtration of ceramic: Ⅰ, Slip casting[J]. J. Amer. Ceram. Soc. 1986, 69(12): 882-887.
    [80] Leenaars A F M, Burggraaf A J. The preparation and characterization of alumina membranes with ultra-fine pores: 2. The formation of supported membranes[J]. J. Coll. Interface. Sci. 1985, 105(1): 27-40.
    [81] Jeffrey C S W, Li C C. An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor[J]. J. Membr. Sci. 2000, 167: 253-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700