用户名: 密码: 验证码:
中空液压马达可靠性研究及设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三轴转台为导弹导引装置提供运动平台,是导弹半实物仿真的关键设备,我所采用三轴转台的液压油源系统作为中空液压马达的试验装置。作为伺服动力驱动的一个重要元件,中空液压伺服马达在多轴液压仿真转台等领域具有重要的应用价值。由于中空液压马达三轴转台系统工程复杂、设计量大,采用合适的可靠性设计原理进行全面的可靠性设计,对验证整体设计方案的合理性以及不足之处有其必要性和现实性。
     本文首先介绍了三轴转台系统整体结构设计,较详细地阐述了系统主要构件组成,例如:油源以及电控系统组成、内框和中框以及外框的组成、台座驱动系统以及计算机控制系统组成。根据整体设计方案,整个系统采取由油源、台体以及计算机控制系统三部分串联组成,而且各分系统内部主要构件也是采取串联结构的,因而对系统建立可靠性模型为串联模型。对系统的可靠性预计,根据系统可靠性指标,对系统采用元器件计数预计法进行预计,根据预计结果,可以很清楚发现系统的故障率并对系统故障率最大部分电控分系统提出可靠性改进方案与思路。可靠性预计是由单元到系统的预计,而可靠性分配则是由系统到单元的分配,通过采用串联系统比例分配法对系统以及关键构件进行可靠性合理分配,有效解决了其分配问题。对系统故障分析采用故障树分析FTA法以及失效模式影响分析FMEA法,对分析以及解决系统故障有直接帮助。在对系统可靠性设计保障方面引入了降额设计、冗余设计、容错设计以及可靠性验证试验等措施。
     本文系统、全面地分析了中空液压马达系统可靠性设计三大主要环节:预计与分配、故障模式以及影响分析以及可靠性设计保障,有效解决了系统的可靠性设计问题。
The three axis table provides the movement platform for the missile guidance device, is the missile half in kind simulation essential equipment, I use the hydraulic pressure oil source system of the three axis table to take the spatial oil motor test equipment. As a servo power actuation important part, the center spatial hydraulic pressure servomotor has the important application value in multiple spindle hydraulic pressure simulation table. Because the center spatial oil motor three axis table system engineering is complex, supposes measures in a big way, uses the appropriate reliability design principle to carry on the comprehensive reliability design, to confirms the overall design plan the rationality as well as the deficiency has its necessity and the feasibility.This article first introduced the three axis table system overall construction design, in detail elaborated the system primary member composition, for example: oil source as well as electrically controlled system composition, inner edge and center frame as well as outer edge composition, pedestal actuation system as well as computer control system composition. According to the overall design plan, the overall system is composed by the oil source, the platform body as well as the computer control system three parts of series, moreover various subsystems interior primary member also adopts the series connected structure, thus the system reliable model established is the series connected model. Estimated to the system reliability, according to the system reliable target, uses the primary device to the system to count estimate law to carry on the estimate, according to estimates the result, may discover very clearly system failure rate and propose the reliability improvement program and the mentality to the system failure rate most majority of electrically controlled subsystem. The reliable estimate is from the unit to the system estimate, but reliability allocation then is from the system to the unit assignment, through using the cascade system proportion method of distribution carries on the reliable rational distribution to the system as well as the essential component, effective addressing its assignment problem. By the fault tree analytic method FTA as well as the fault model effective analytic method FMEA to the system fault analysis, has the direct help for analyzing as well as solving system failure .In the system reliability design safeguard aspect , fall volume design, redundancy design ,fault-tolerant design as well as reliability verification test and so on measure are introduced.This article systematically and comprehensively analyzes three big and key links of the center spatial hydraulic pressure motor system reliability to design: estimate and assignment, fault pattern as well as fault analysis as well as reliability design safeguard, in effectively address system reliability design question.
引文
[1] 李良巧主编.机械可靠性设计与分析[M],北京:国防工业出版社,1998
    [2] 徐颧主编,机械设计手册(1-5)[M],北京:机械工业出版社,1995
    [3] 王超王金编著.机械可靠性工程[M].北京:冶金工业出版社,1992
    [4] Dimitri Kececioglu. Reliability Engineering Handbook[M], PTR Prentice
    [5] 杨为民等,可靠性·维修性·保障性总论.国防工业出版社,1995年5月
    [6] C. Sundararajan, Probabilistic Structural Mechanics Handbook[M], Chapman and Hall, 1995, 53-69
    [7] 徐颧.机械强度的可靠性设计[M],北京:机械工业出版社,1984
    [8] Kececioglu D., Chester L. B., Gardner E. O. Sequential Cumulative Fatigue Reliability[J], Proc. R&M Symp. 1974: 533-539
    [9] 航空工业总公司第三零一研究所,翻译.原苏联机械可靠性问题译文集[M],北京:航空工业总公司第三零一研究所出版,1995
    [10] [苏]P.B.库格里著.大量生产机器的可靠性[M],北京:机械工业出版社 1990.8
    [11] Keceioglu, D. Lamarre, G. Prediction of The Reliability of Mechanical Components Subjected to Combined Alternating And Mean Stresses With Non-Constant Stress Ratio[J], Mieroelectronies And Reliability, 1980 VOL.: 20, NO.: 1
    [12] [日]市田篙铃木和幸著,郭建英,沙巨大译可靠性分布与统计[M],北京:机械工业出版社,1988.10
    [13] Alfreda H-S Aug, Wilson, H Tang. Probablilty concepts in engineering planning and design[M], John Wiley& Sons, 1975
    [14] Wassell H J H,牟致忠,谢秀玲译.工程产品的可靠性[M],上海:上海翻译出版公司,1986
    [15] Haugen E.B,汪一麟等译.机械概率设计[M],北京:机械工业出版社,1985
    [16] [日]川崎羲人著,吴关昌译可靠性、维修性总论[M],北京:机械工业出版社,1987
    [17] 额田启三机械系统可靠性[M](来华讲课资料),1990
    [18] 胡昌寿主编.航天可靠性设计手册[M],北京:机械工业出版社,1999.01
    [19] Kapur K C,Lambemon L R,张智铁译.工程设计中的可靠性[M]
    [20] 谢云叶,机电一体化系统与产品的可靠性设计分析,《机电工程技术》2004年第33卷第7期
    [21] 《可靠性设计与验证技术》,中国船舶工业质量与可靠性中心,2003
    [22] 孙新利,陆长捷,《工程可靠性教程》2005
    [23] 张健、雷雨成:串联系统可靠性分配的层次分析方法,《机械设计与制造》2002年第6期,1-3
    [24] 邱利琼,舒俊辉,串联系统可靠性模糊优化,《重庆大学学报》2002年第7期,20-22
    [25] 张兴旺,系统设备可靠性模型及其数学模型,《制造业自动化》2002年第5期,45-46
    [26] 徐艳丽,沈怀荣,航天产品系统可靠性评估方法及软件研究,《指挥技术学院学报》2001年6月第12卷第3期,93-96
    [27] 温小云,师宇杰,牛忠霞,系统可靠性模型综述,《电子产品可靠性与环境试验》2005年第3期,75-62
    [28] 胡映,系统可靠性预计的方法,《现代电子技术》2003年1期,13—15
    [29] 张晓迎,张晓丽,可靠性预计中计数法和应力分析法的比较,《压电与声光》2005年6月,215-218
    [30] 李培基,应力分析法可靠性预计实践中的几点认识,《电子产品可靠性与环境试验》2001年10月第5期,19-20
    [31] 魏选平,系统可靠性预计方法综述,《国外电子测量技术》2002年第1期35-36
    [32] 张颖,刘艳秋,系统可靠性分配方法,《沈阳工业大学学报》,1999年第21卷第2期
    [33] 李守仁,《可靠性工程》1991年,哈尔滨船舶工程学院出版社,1991
    [34] 汪培庄.模糊集合论及其应用[M].上海:上海科技出版社,1983.
    [35] 沈祖培,黄祥瑞,《GO法原理及应用》,清华大学出版社,2003年,
    [36] 李根成,可靠性统计试验方案设计与分析,《战术导弹技术》2003年第1期,6-10
    [37] 王珍熙,可靠性、冗余及容错技术,北京:航空工业出版社,1991
    [38] 崔荣一,洪炳熔,陈圣俗,容错计算机系统的可靠性验证系统设计与实现,《计算机应用研究》2000年第11期,87-89
    [39] 王磊,刘亚伟,用容错技术提高提升机控制系统的可靠性,《煤炭工程》2004年第6期,42-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700