用户名: 密码: 验证码:
空间飞行器姿态控制仿真试验平台系统研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,新一代航天器将具有空前的自主能力和指向精度。然而,空间飞行器的发射是一项高投入、高风险的任务。一个降低风险的途径就是在上天前对系统软硬件进行充分的地面验证试验。由于地球引力和摩擦的影响,要想在地球上的实验室实际复现航天器动力学无疑是非常困难的。而气浮支承方式则为试验提供了一个极低力矩的条件,从而为复现太空自由环境提供了可能。气浮台系统通过配置可具备若干平动或转动的自由度,采用球形气浮轴承则可以提供三轴的转动自由度,是研究空间飞行器姿态动力学与控制问题的理想平台。
     本文对新型的三轴气浮转台进行了设计与控制研究,重点研究了系统的姿态确定及动力学与控制问题。基于刚体运动学,本文给出了由惯性测量单元的输出所确定的气浮台姿态解算方程,并提出了利用陀螺仪的动态输出与加速度计的静态输出进行组合的姿态确定方法。在给出三轴气浮台姿态动力学方程的基础上,进行了控制系统建模、分析和仿真,并初步进行了单通道试验。
Along with the development of the aerospace technology, the next generation of spacecraft will have an unprecedented degree of autonomy and pointing accuracy. However, launching a spacecraft is a high-cost, high-risk venture. One way to mitigate much of this risk is to demonstrate hardware and algorithm performance in ground-based test-beds. It is typically difficult to experimentally replicate spacecraft dynamics in an Earth-bound laboratory because of the influences of gravity and friction. An air bearing provides a very low-torque environment for experimentation, thereby recapturing the freedom of the space environment as effectively as possible. Depending upon configuration, air-bearing systems provide some combination of translational and rotational freedom; the three degrees of rotational freedom provided by a spherical air bearing are ideal for investigation of spacecraft attitude dynamics and control problems.
     This thesis has researched the design and control of a new triaxial air-bearing experimental system. In this thesis, the attitude determination and the attitude dynamics and control of the system was focused on. In the base of rigid body kinematics, the equations of attitude computation was developed via the IMU sensor’s output, and a new method of the integrated attitude determination using gyroscope’s dynamic output and accelerometer’s static output was presented. Based on the development of triaxial air-bearing test-bed’s attitude dynamics equations, this thesis has established a mathematic model of the control systems, then the analysis and simulation were done, at last the basic experiment was performed.
引文
[1] ByungMoon Kim et al. Designing a Low-Cost Spacecraft Simulator. IEEE Control Systems Magazine, 2003.8
    [2] 王景涛. 微重力实验环境. 物理. 1998.7
    [3] Jana L.Schwartz, Mason A.Peck, and Christopher D.Hall. Historical Review of Air-Bearing Spacecraft Simulators. Journal of Guidance, Control, and Dynamics, 2003.7-8, 26(4)
    [4] Das A. ASTREX – a Unique Test Bed for CSI Research. Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, HI, 1990.12.
    [5] Regehr, M.W. et al. The Formation Control Testbed, Aerospace Conference. 2004. Proceedings. 2004 IEEE. 2004.3 ,Vol.1: 557~564
    [6] Greamer, N.G. and Teneza, N.C. RESHAPE: An Experimental Facility for Satellite Control. Proceedings of the American Control Conference, Chicago, IL, 1992.6
    [7] Soon-Jo Chung. Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003.8
    [8] Virginia Polytechnic Institute and State University Space Systems Simulation Laboratory. http://www.sssl.aoe.vt.edu/
    [9] Honeywell 公司. http://www.honeywell.com/
    [10] Colebank J. et al. SIMSAT: A Satellite System Simulator and Experimental Test Bed for Air Force Research. Master’s thesis, Air Force Institute of Technology, 1999.3
    [11] Fullmer, R. R. Dynamic Ground Testing of the Skipper Attitude Control System. AIAA, Aerospace Sciences Meeting and Exhibit, 34th, Reno, NV, 1996.1
    [12] The University of Michigan Attitude Dynamics and Control Laboratory. http://www.engin.umich.edu/dept/aero/ADCL/
    [13] NPS - Spacecraft Research & Design Center, 网址 http://www.aa.nps.navy.mil/
    [14] 张新邦 等. 卫星控制系统仿真技术. 计算机仿真. 2000.2
    [15] 李季苏 等. 大型卫星三轴气浮台全物理仿真系统. 控制工程. 2001.3
    [16] 李季苏 等. 卫星控制系统全物理仿真. 航天控制. Vol. 22 ,No. 2. 2004 .4
    [17] 刘暾 等. 静压气体润滑. 哈尔滨:哈尔滨工业大学出版社,1990
    [18] [日]十合晋一 著. 韩焕臣 译. 气体轴承:设计、制作与应用. 北京:宇航出版社,1988.3
    [19] 丁振乾 编著. 流体静压支承设计. 上海:上海科学技术出版社,1989.4
    [20] 王云飞 编著. 气体润滑理论与气体轴承设计. 北京:机械工业出版社,1999.2
    [21] 黄圳圭. 航天器姿态动力学. 长沙:国防科技大学出版社,1997
    [22] Jinglai Shen et al. Air Spindle Attitude Control via Proof Mass Actuators. Proceedings of 40th IEEE Conference on Decision and Control. Orlando, Florida USA, 2001.12
    [23] Jinglai Shen Attitude control of a tilted air spindle testbed using proof mass actuators. Proceedings of the American Control Conference, Anchorage, AK. 2002.5
    [24] Sangbum Cho et al. Feedback Control of Triaxial Attitude Control Testbed Actuated by Two Proof Mass Devices. Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada USA. 2002.12
    [25] Chernesky, Vincent S. Development and Control of a Three-Axis Satellite Simulator for the Bifocal Relay Mirror Initiative. Master’s Thesis. Naval Postgraduate School Monterey, CA. 2001.12
    [26] P.K.C. Wang, J. Yee, and F.Y. Hadaegh. Synchronized Rotation of Multiple Autonomous Spacecraft with Rule-Based Controls: Experimental Study. Journal of Guidance, Control, and Dynamics, Vol.24, No.2, 2001.3-4
    [27] 吴忠 等. “和平号”空间站 SGCMG 系统及其操纵,1999.2
    [28] Sangbum Cho, et al. Equations of Motion for the Triaxial Attitude Control Testbed. Proceedings of 40th IEEE Conference on Decision and Control. Orlando, Florida USA, 2001.12
    [29] J. L. Schwartz and C. D. Hall. The Distributed Spacecraft Attitude Control System Simulator: Development, Progress, Plans. NASA Space Flight Mechanics Symposium, Greenbelt, Maryland, 2003.2
    [30] J. L. Schwartz. The Distributed Spacecraft Attitude Control System Simulator: From Design Concept to Decentralized Control. Ph.D’s Dissertation. Virginia Polytechnic Institute and State University. 2004.7
    [31] 平菊英 等. 卫星大动量矩飞轮的设计. 上海航天,2002.1
    [32] 贺晓霞 等. 静压气体球轴承支承球形转子的干扰力矩分析. 中国惯性技术学报 2002.12
    [33] 樊蕾. 气浮台气体静压轴承静特性的有限元分析. 硕士论文. 哈尔滨工业大学,2002.7
    [34] 王祖温 等. 单节流孔静压球面气体轴承动态特性的有限元分析. 摩擦学学报 Vol.23, No.5. 2003.9
    [35] Jinglai Shen et al. Dynamics and Control of a 3D Pendulum. 43rd IEEE Conference on Decision and Control. 2004.12
    [36] D.H. Titterton and J.L. Weston. Strapdown Inertial Navigation technology. The Lavenham Press Ltd, Lavenham 1997
    [37] R. Dorobantu, C. Gerlach. Investigation of a Navigation–Grade RLG SIMU type iNAV–RQH. Institut für Astronomische und Physikalische Geod?sie Technische Universit?t München, Germany, http://tau.fesg.tu-muenchen.de/
    [38] 万德钧 等译. 捷联式惯性导航技术. 中国船舶信息中心,2001
    [39] 孙世贤 等编著. 理论力学教程. 长沙:国防科技大学出版社,1997
    [40] 刘廷柱 著. 航天器姿态动力学. 北京:国防工业出版社,1995
    [41] 杨大明. 空间飞行器姿态控制系统. 哈尔滨:哈尔滨工业大学出版社,2000
    [42] 屠善澄 等. 卫星姿态动力学与控制. 北京:宇航出版社,2001
    [43] 廖晖. 对地定向三轴稳定卫星姿态确定和控制系统研究. 博士论文. 西北工业大学,2000.7
    [44] 柏林. 三轴稳定卫星姿态确定和姿态控制系统研究. 硕士论文. 西北工业大学,2001.1
    [45] 马晓敏. 带飞轮航天器的姿态控制问题. 硕士论文. 上海交通大学,2002.7
    [46] 金东哲. 对采用反作用飞轮的对地观测小卫星姿态控制系统研究. 硕士论文. 北京航空航天大学,2002.3
    [47] 田春华. 卫星姿态控制系统的分析、设计和仿真研究. 硕士论文. 哈尔滨工业大学,2000.7
    [48] 李强. 小卫星反作用飞轮控制研究. 硕士论文. 哈尔滨工业大学,2000.6
    [49] 杨宇. 小卫星高精度反作用轮控制技术研究. 硕士论文. 哈尔滨工业大学,2000.7
    [50] 梅晓榕 等编著. 自动控制元件及线路. 哈尔滨:哈尔滨工业大学出版社,1993.10
    [51] 胡祐德 等编著. 伺服系统原理与设计(修订版). 北京:北京理工大学出版社,1999.7
    [52] 孙兆伟 等. 微小卫星高精度三轴稳定控制算法研究. 上海航天,2000.2
    [53] 费从宇 等. 飞轮转速过零时卫星姿态的非线性控制. 中国空间科学技术,2001.10
    [54] 钱杏芳 等编著. 导弹飞行力学. 北京:北京:北京理工大学出版社,2000.8
    [55] 孙兆伟 等. 小卫星大角度姿态机动控制研究及半实物仿真验证. 航天控制,2000.2
    [56] 王炳全 等. 仅用反作用轮进行小卫星姿态大角度机动. 飞行力学,1999.3
    [57] 刘金琨 著. 先进 PID 控制 MATLAB 仿真(第 2 版). 北京:电子工业出版社,2004.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700